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Chapter 1

Introduction

There is an always growing demand for software systems to be secure and reliable. While automatic
tests help developers to discover and fix bugs during development, testing alone does not suffice to
show that a program behaves as intended on all inputs. However, in many applications even small
malfunctions can have severe consequences. Thus, the field of software verification is concerned with
proving the correctness of programs with regard to their specification using rigorous methods known
from mathematics and logic.

Compared to imperative programming languages, the high level of abstraction provided by purely
functional programming languages, such as Haskell, makes it easier for their users to reason about
code mathematically. Nevertheless, reasoning informally about complex software systems, and code
in general, still remains a difficult task that is prone to errors. By contrast, interactive theorem provers,
like Coq, allow their users to argue about a program’s properties semi-automatically and with high
confidence. In a so called specification language provided by the proof assistant, the user first writes
a functional program and specifies properties that should be satisfied by the program. The interactive
theorem prover assists the user in proving the specified properties. Usually, a verified program can be
extracted in another programming langauge – e.g., Haskell – once the correctness of the program has
been verified with respect to its specification. This approach is not applicable to existing code, though.
Moreover, the formal verification of a program is much more difficult than well established testing
and debugging practices. Therefore, it is also favorable to start the development of a new software
product in a general purpose programming language rather than Coq or another proof assistant.
Only once we have convinced ourselves that the program most likely behaves as intended, we want
to attempt a proof of the most important properties. In order to reason about existing and newly
developed Haskell programs in Coq, we need to convert Haskell code to the specification language
used by Coq.

The hs-to-coq compiler developed by Spector-Zabusky et al. (2017) performs such a translation from
Haskell to Coq. Their compiler is primarily designed to translate total Haskell programs. The restric-
tion to total Haskell programs is inherited from Coq’s requirement that all functions must be total.
Unfortunately, most real Haskell programs are not total. In Agda – a proof assistant similar to Coq –
the same limitation exists. Abel et al. (2005) presented an approach for the translation from Haskell
to Agda that does not require the original Haskell programs to be total. The translation of partial
functions is realized through a process known as monadic translation. The idea is to model partiality
in the target language by the means of the Maybe monad explicitly. By performing such a monadic
translation, Jessen (2019) implemented a prototype for a compiler from potentially partial Haskell
programs to Coq. In this thesis we want to build a compiler for the monadic translation from Haskell
to Coq based on the prototype by Jessen (2019). However, in addition to partiality, we would like to
enable our model to represent other ambient effects (Christiansen et al., 2019) that can occur in Haskell
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1. Introduction

programs but not in Coq. We implement an approach presented by Dylus et al. (2018) to achieve an
effect-generic monadic translation.

The remainder of this thesis is structured as follows. We begin in Chapter 2 with the preliminaries of
this thesis. This includes among others an introduction to the Coq proof assistant and an explanation
of the principles behind the effect-generic monadic translation. In Chapter 3 the translation rules for
the conversion from Haskell to Coq are formalized and in Chapter 4 we present the actual implemen-
tation of our compiler. The translation rules and their implementation is evaluated by performing
a case study in Chapter 5. The last chapter discusses and summarizes our implementation as well
as the results of our case study. Furthermore, we provide an outlook on future improvements and
extensions of our compiler.
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Chapter 2

Preliminaries

This chapter introduces fundamental concepts that are necessary to comprehend the following chap-
ters. The first section gives a brief introduction to the Coq Proof Assistant based on the electronic
textbook Software Foundations by Pierce et al. (2019) and highlights key differences between Haskell
and Coq that need to be addressed by our compiler. Furthermore, the free monad and how it can
be used to model Haskell programs is presented. Since basic knowledge of Haskell is assumed, no
introduction to the Haskell programming language is given. However, a subset of Haskell, that we
will focus on for the remainder of this thesis is presented in the third section of this chapter. Finally,
the notation we are going to employ to describe the translation rules in Chapter 3 is outlined in the
last section.

2.1 The Proof Assistant Coq

Coq is an interactive theorem prover that has been under development since 1983. Unlike automated
theorem provers, Coq does not attempt to prove a proposition autonomously but in an interactive
fashion with the help of human guidance. First, the user creates a model of the mathematical objects
and algorithms they want to reason about in a functional programming language called Gallina. The
same language is then used to state propositions about the functional program and construct proofs
for these propositions. Coq offers so called tactics to automate some otherwise tedious tasks in the
proof construction process. The correctness of the final proof is then checked by Coq. Hereinafter, we
are going to use the term Coq to refer to both the proof assistant and the programming language.
In the following subsections, the most important syntactic constructs of Coq’s specification language
used throughout this thesis are presented.

2.1.1 Types and Data Type Declarations

In contrast to many other programming languages, Coq has a minimal set of build-in data types.
Data types like numbers and booleans – which are commonly directly build into a language – can be
defined using the same mechanisms as for user-defined types. Custom types are declared using the
Inductive keyword. The following example demonstrates the declaration of a boolean data type.

Inductive bool : Type

:= true

| false.
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2. Preliminaries

In Coq, declarations are formed by so called sentences which start with a capitalized command and
end with a period (The Coq Development Team, 2018, p. 30). The Inductive sentence, in the example
above, declares a data type bool with two constructors true and false. Unlike in Haskell, there are no
capitalization rules for identifiers. The colon in the first line annotates the type of bool. In this case,
bool is of the build-in type Type. Similarly, we can use a colon to declare the type of the constructors.
Both true and false are constants of the newly declared type bool.

Inductive bool : Type

:= true : bool

| false : bool.

Natural numbers can be represented in Coq by the means of Peano numbers using the following
Inductive sentence.

Inductive nat : Type

:= O : nat

| S (n : nat) : nat.

This time, the constructor S takes an argument n of type nat. (n : nat) is called a binder for the
argument n. Multiple arguments of the same type can be combined into a single binder. For example,
(n m : nat) declares two arguments n and m of type nat. In constructor declarations we can also
choose to declare the arguments anonymously. In this case, the constructor S must be annotated with
a function type as shown below.

Inductive nat : Type

:= O : nat

| S : nat -> nat.

Even though, they are not directly build into the language, the types bool and nat are part of Coq’s
standard library and can be used in every Coq program.

Coq also supports the declaration of polymorphic types. Type arguments are passed like regular
arguments, i.e., to declare a polymorphic list data type, we just have to add a binder for a type
variable to the Inductive sentence.

Inductive list (X : Type) : Type

:= nil : list X

| cons : X -> list X -> list X.

Now list is a function that produces a list data type for the given value data type. In Coq, we can
print the type of a term using the Check command.

Check list. (* ==> list : Type -> Type *)

However, the type argument X has been added to the constructors nil and cons as well.
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2.1. The Proof Assistant Coq

Check nil. (* ==> nil : forall X : Type, list X *)

Check cons. (* ==> cons : forall X : Type, X -> list X -> list X *)

We can interpret types with forall quantifiers as function types which additionally give a name to
their arguments. In other words, nil is a function which takes a type as its first argument X. The
return type of that function depends on the type given as nil’s first argument. The term nil nat for
example is of type list nat. Since the return types of functions can depend on their arguments, Coq
is called a dependently typed language.

Coq also supports type inference. Thus, we do not have to pass the type arguments explicitly if it has
been marked as an inferred argument, e.g., using an Arguments sentence. Arguments that should be
inferred by Coq are simply wrapped in curly braces.

Arguments nil {X}.

Arguments cons {X}.

Now, the type of nil is list ?X where ?X is a type inferred from the respective context. It is also
possible to specify that the arguments bound by a binder should be inferred in the declaration itself.
The following marks the type argument X as implicit for example.

Inductive list {X : Type} : Type

:= nil : list X

| cons : X -> list X -> list X.

However, now X is not only an implicit argument of nil and cons but also of list. Therefore, list
tries to infer the value type from the context which is not necessarily what we want.

2.1.2 Function Declarations and Expressions

In Coq functions are declared using Definition sentences. The Definition command is followed by
the name of the function to declare, binders for its arguments, an annotation of the function’s return
type and finally a term on the right-hand side of the function declaration. For example, the following
Definition sentence declares a function null that tests whether a list xs is empty or not.

Definition null {X : Type} (xs : list X) : bool :=

match xs with

| nil => true

| cons x xs' => false

end.

On the right-hand side of null we are using a match expression to perform pattern matching. The
match expression corresponds to a case expression in Haskell. However, Coq requires us to list all
constructors of the matched data type. Therefore, the following declaration of a function that returns
the first element of a list is not allowed in Coq since there is no alternative for the nil constructor.
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2. Preliminaries

Fail Definition head {X : Type} (xs : list X) : X :=

match xs with

| cons x xs' => x

end.

(* ==> The command has indeed failed with message:

Non exhaustive pattern-matching: no clause found for pattern nil *)

The Fail command checks that the subsequent declaration contains an error and then continues
processing the Coq source file without declaring the function.

Further kinds of Coq expressions known from Haskell include if expressions, number literals and
lambda abstractions. if expressions look just like in Haskell but since bool is not build directly into
Coq, they work with any data type which has exactly two constructors (The Coq Development Team,
2018, p. 48). The following example demonstrates, that we can use values of type nat for the condition
of if expressions. The first constructor O is handled like true and the second constructor S like false.

Compute if O then 1 else 2. (* ==> 1 *)

Compute if S O then 1 else 2. (* ==> 2 *)

The literals 1 and 2 denote values of type nat and are short for S O and S (S O), respectively.

Lambda abstractions are created with the fun keyword followed by binders for the arguments. The
following lambda abstraction computes the successor of a natural number.

fun (n : nat) => S n

Similar to how we did not have to annotate the types of x and xs' in the pattern cons x xs' above,
we do not have to annotate the type of the lambda abstraction’s argument either.

fun n => S n

In this case, Coq infers the type of n from the right-hand side of the lambda abstraction.

One crucial difference between functions in Haskell and Coq is, that Coq distinguishes between non-
recursive functions – like null – and recursive functions. Recursive functions must be declared with
the Fixpoint command instead of the Definition command. The following function computes the
length of a list for example.

Fixpoint length {X : Type} (xs : list X) : nat :=

match xs with

| nil => O

| cons x xs' => S (length xs')

end.

Coq employs an additional check to verify that the function declarations declared by such Fixpoint

sentences terminate on all inputs. More details on the Coq’s termination analysis are given in Sec-
tion 3.4.2.
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2.1. The Proof Assistant Coq

2.1.3 Propositions and Proofs

Since Coq is a proof assistant, it provides a mechanism to denote propositions and their proofs. Propo-
sitions are given a name through Theorem sentences. For example, the following sentence declares a
theorem called null_length that states that if a list is empty, its length is zero.

Theorem null_length: forall (X : Type) (xs : list X),

null xs = true -> length xs = 0.

Proof. (* ... *) Qed.

After the theorem has been declared, the user writes a proof script which constructs a proof for the
theorem using the tactics provided by Coq. Since we will not write any proofs using Coq in this thesis,
the proof script is left blank in the example above. However, one aspect that we have to understand
about proofs in Coq is how Coq checks whether the proof constructed by the user actually proves the
stated proposition.

Coq makes use of the so called Curry-Howard isomorphism, to check the validity of proofs (The Coq De-
velopment Team, 2018, p. 1). Basically, propositions are represented by types and values correspond
to proofs. A proposition is true if and only if there is a value of the corresponding type. Therefore,
Coq can employ its type checker to verify that the proof specified by the user is correct. For example,
the propositions True and False are defined as follows in Coq.

Inductive False : Prop := .

Inductive True : Prop := I : True.

The build-in type Prop denotes the type of propositions and is a subset of Type. Hence, False is a type
with no constructor and True is a type with exactly one value denoted by the constant I. A theorem
that states that the proposition True is true just needs to apply the constructor I to create a value of
type True which serves as evidence, that the proposition holds.

Theorem true_is_true: True.

Proof. apply I. Qed.

On the other hand, since no value of type False exists, the proposition False does not hold which is
exactly what we would expect.

Of course, the proof scripts of null_length and other real theorems and the proofs constructed by
them are much more complicated than that. What may be confusing is that the proposition on the
right-hand side of null_length does not even look like a type anymore since it contains values like
true and 0. That values occur within types is a common feature of dependently typed languages. In
fact, there is no difference between types and terms in Coq. As we have seen already, types are passed
to functions like regular arguments for example.
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2. Preliminaries

2.1.4 Differences between Haskell and Coq

Let’s conclude this brief introduction to Coq by summarizing the key differences between Haskell
and Coq. First of all, both Coq and Haskell are functional programming languages and share a lot
of similarities as such. Additionally, Coq introduces dependent types which allow it to be used as a
proof assistant. However, this extension requires Coq to enforce the following two conditions:

1. all pattern matching must be exhaustive and

2. all functions must provably terminate on all inputs.

In consequence, there is no partiality, no infinite data structures and Coq is not Turing complete. Satisfy-
ing the termination requirement of Coq presents one of the mayor challenges for the implementation
of our compiler. The next section, presents an approach to model partiality in Coq.

2.2 Modeling Ambient Effects in Coq

Since Haskell is a purely functional programming language, computations are not allowed to have
any implicit side-effects. Therefore, all interactions with the environment need to be performed explic-
itly within the IO monad. However, the evaluation of certain expressions can still implicitly cause an
effect in Haskell. For example, the evaluation of a call to error or undefined causes the program to ter-
minate immediately (Marlow, 2010, p. 16). Similarly, the trace function provided by the Debug.Trace

module from Haskell’s base library prints a message to the console for debugging purposes. Such
ambient effects (Christiansen et al., 2019) are not supported by Coq. In this section we present the
approach implemented by our compiler to model the ambient effects of translated Haskell programs
in Coq.

2.2.1 Monadic Translation

Due to the totality requirement of Coq, the function head cannot be expressed directly within Coq.
When we try to implement head in Coq, we get stuck in the case for the empty list as indicated by the
three question marks in the left listing below.

head :: [a] -> a

head xs = case xs of

[] -> undefined

x : xs' -> x

Definition head (X : Type) (xs : list X) : X

:= match xs with

| nil => (* ??? *)

| cons x xs' => x

end.

However, the same idea used by Haskell to model side-effects using the IO monad can be applied
to model partiality in Coq. Namely, we can use the Maybe monad, to express that the computation
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2.2. Modeling Ambient Effects in Coq

of head does not return a value for some inputs. The Maybe data type is known as option in Coq.
The constructors Nothing and Just from Maybe correspond to option’s constructors None and Some,
respectively. By lifting the return value of head into the Maybe monad, we can now implement the
function in Coq as well.

head :: [a] -> Maybe a

head xs = case xs of

[] -> Nothing

x : xs' -> Just x

Definition head (X : Type) (xs : list X) : option X

:= match xs with

| nil => None

| cons x xs' => Some x

end.

Lifting just the return value of functions is not enough, though. Due to Haskell’s lazy evaluation
strategy, the evaluation of the argument of a function can be effectful as well. Consider for instance
a list of lists xss and the expression head (head xss) which computes the first element of the first
list in xss. If xss is empty, the inner call to head fails. However, Haskell will not terminate until the
evaluation of this inner call is requested by the evaluation of the case expression in the outer call. To
model effects in arguments, the argument type needs to be lifted as well. In consequence, we have to
consider the additional case that the given argument represents a runtime error, i.e., is Nothing.

head :: Maybe [a] -> Maybe a

head mxs = case mxs of

Nothing -> Nothing

Just ([] ) -> Nothing

Just (x : xs') -> Just x

Definition head (X : Type) (mxs : option (list X))

: option X

:= match mxs with

| None => None

| Some (nil ) => None

| Some (cons x xs') => Some x

end.

Since Maybe is a monad, we can use the bind operator instead. The bind operator unwraps the value
stored within the monad, applies the given operation on the value and handles the absence of a value
appropriately.

head :: Maybe [a] -> Maybe a

head mxs = mxs >>= \xs ->

case xs of

[] -> Nothing

x : xs' -> Just x

Definition head (X : Type) (mxs : option (list X))

: option X

:= mxs >>= (fun xs => match xs with

| nil => None

| cons x xs' => Some x

end).

Similarly, the values inside of the list can be effectful as well. For example, the call head [undefined]

should return Nothing in the lifted variant. However, the return value of head is always wrapped by
Just in the example above. Therefore, we have to remove the Just constructor and lift the list’s value
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type to the Maybe monad. While the type Maybe [Maybe a] would be sufficient to model a list like [1,

undefined, 2], it fails to represent 1 : undefined since the second argument of (:) is not lifted to
the Maybe monad. In consequence, we have to update the declaration of the list data type to lift all
arguments of all constructors.

data List a

= Nil

| Cons (Maybe a) (Maybe (List a))

Inductive list (X : Type) : Type

:= nil : list X

| cons : option X

-> option (list X)

-> list X.

Finally, the head function can now be implemented as follows.

head :: Maybe (List a) -> Maybe a

head mxs = mxs >>= \xs ->

case xs of

Nil -> Nothing

Cons mx mxs' -> mx

Definition head (X : Type) (mxs : option (list X))

: option X

:= mxs >>= (fun xs => match xs with

| nil => None

| cons mx mxs' => mx

end).

The process of lifting argument and return types of functions as well as the arguments of constructors,
as shown above, is known as a monadic translation of the program. Abel et al. (2005) present a monadic
translation from Haskell programs to Agda. Based on their translation rules, Jessen (2019) developed
a prototype for a compiler that monadically translates Haskell programs to Coq.

Note that except for the representation of undefined as Nothing, the definitions above are completely
independent of the Maybe and option data types, i.e., we can simply swap the Maybe monad for another
monad to model other effects. The implementation by Jessen (2019) supports the Identity monad, for
example, for the translation of total programs. In Haskell we could now generalize our definitions to
work with any monad by adding an additional type parameter. For instance, the listing below shows
the list data type lifted to an arbitrary monad with type constructor m.

data List m a = Nil | Cons (m a) (m (List m a))

In Coq this generalization would allow us to proof properties of functions that hold regardless of the
effect. However, it is not possible to simply add this type parameter to the list data type in Coq.

Fail Inductive list (M : Type -> Type) (X : Type) : Type

:= nil : list M X

| cons : M X -> M (list M X) -> list M X.

As indicated by the Fail command, the definition above is rejected by Coq. Coq rejects the definition
since it can be used to implement potentially non-terminating functions (Dylus et al., 2018, p. 6). If
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the declaration was allowed, the type argument M could be instantiated with the following type, for
example.

Definition NatFun (A : Type) : Type := A -> nat.

When M is instantiated with NatFun, the second argument of the cons constructor is a function of type
list NatFun nat -> nat. We can now implement the following function which invokes the function
inside of the list with the list itself.

Definition applyFun (xs : list NatFun nat) : nat

:= match xs with

| nil => 0

| cons mx mxs' => mxs' xs.

Even though applyFun itself is not recursive, the evaluation of an expression like applyFun (cons 0

applyFun) does not terminate. Since Coq requires functions to terminate on all inputs, the definition
of list with a type argument for M is not allowed. Therefore, Dylus et al. (2018) model monads using a
combination the free monad and a container representation for functors. In the next two subsections,
we give a brief introduction to the free monad and containers.

2.2.2 Free Monad

The free monad is a data type that turns any functor into a monad (Dylus et al., 2018, p. 7). In Haskell
the free monad can be defined as follows.

data Free f a = Pure a | Impure (f (Free f a))

For any functor f , Free f is a monad, i.e., the following definitions fulfill the monad laws.

return :: Functor f => a -> Free f a

return = Pure

(>>=) :: Functor f => Free f a -> (a -> Free f b) -> Free f b

(Pure x) >>= f = f x

(Impure fx) >>= f = fmap (>>= f) fx

The free monad can be used to model, among others, the Maybe and Identity monads. If we instantiate
the functor f with a data type Zero that does not have any constructor, we cannot create a value of
type Free Zero a using the Impure constructor (in a total setting). Therefore, only the Pure constructor
remains and the data type behaves like Identity.

data Zero a {- polymorphic type without constructors -}

data Identity a = Identity a
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Similarly, a data type One, with a single inhabitant, can be used to model the Maybe monad.

data One a = One

data Maybe a = Just a | Nothing

The Pure constructor corresponds to Just and Impure One corresponds to Nothing.

In the context of our monadic translation, the Pure constructor corresponds to an effect-free head
normal form and values constructed with Impure are interpreted as the monad’s effects (Christiansen
et al., 2019, p. 127). In case of the Identity monad, there are no effects and in case of the Maybe monad,
there is exactly one effect: the absence of a value.

Unfortunately, if we try to define Free in Coq, we run into the same problems as with list in the
previous subsection.

Fail Inductive Free (F : Type -> Type) (A : Type) : Type

:= pure : A -> Free F A

| impure : F (Free F A) -> Free F A.

To eliminate the possibility of defining non-terminating functions using Free, the type argument F is
replaced by a container data structure that models the original functor but does not permit types like
NatFun which were used to implement non-terminating functions.

2.2.3 Containers

Containers provide an abstraction for modeling data types that store values (Dylus et al., 2018, p. 8).
A list, for example, can be characterized through its length and a function that maps indices to values
within the list. Similarly, a tree can be modeled by a function that labels its leafs. This time, the values
are not identified by a single index but by a more complex position within the tree (e.g., the path to the
leaf from the root). Just as the length of the list determines which indices are valid positions within
the list, the exact shape of the tree determines the valid positions of leafs.

In general, a container is characterized by its shape and a function that maps positions within the shape
to values stored by the container. We will denote the data type of the container’s shape as Shape. The
position data type Pos s depends on the concrete choice of a shape s : Shape. In case of lists, the
shape is a natural number (i.e., the length of the list) and the position type is an interval of valid
indices.

Shape = N

Pos(n) = [0; n)

We want to use containers to model functors that are passed into the free monad. For modeling the
Identity and Maybe monads, we introduced the functors Zero and One, respectively. Since there are
no constructors in case of the data type Zero, no values of type Zero τ exist for any type τ. Hence,
values of type Zero τ neither have a shape nor any positions where values of type τ could be stored.
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2.3. Notation

Inductive Void : Type := (* non-polymorphic type without constructors *).

Definition ShapeZero := Void.

Definition PosZero (s : ShapeZero) := Void.

The data type One, on the other hand, has exactly one constructor without any arguments. Thus, all
values of type One τ have the same shape. In the following listing we are using the unit data type as
defined in Coq’s standard library. Since, the constructor of One has no arguments, there are again no
positions inside of values of type One τ.

Inductive unit : Type := tt : unit.

Definition ShapeOne := unit.

Definition PosOne (s : ShapeOne) := Void.

Finally, we need a way to incorporate containers into the definition of Free. For this purpose, we
replace the type argument F by two new type arguments for Shape and Pos, respectively. In the
impure constructor instead of a data structure of type F (Free F A) we need the concrete shape s that
characterizes the container and a function pf that maps positions to values inside of the container. In
this case, the values inside of the container are free monads themselves.

Inductive Free (Shape : Type) (Pos : Shape -> Type) (A : Type) : Type

:= pure : A -> Free Shape Pos A

| impure : forall (s : Shape) (pf : Pos s -> Free Shape Pos A), Free Shape Pos A

This time, Coq does not reject the definition anymore. Therefore, we will use this definition of Free

for the effect-generic monadic translation implemented by our compiler.

2.3 Notation

This section introduces notational conventions used throughout this thesis.

2.3.1 Notation for Translation Rules

The translation rules presented in Chapter 3 are based on the work by Abel et al. (2005). We are also
going to adopt their notation and write H: = G

to express that the Haskell language construct H (e.g., a type, expression or declaration) should be
converted to the corresponding Gallina language construct G (e.g., a term or sentence).

2.3.2 Naming conventions

When formalizing the assumptions and translation rules, we make extensive use of meta-variables
for identifiers, expressions and types. For the sake of readability, those meta-variables will not always
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be introduced explicitly. Instead, we rely on naming conventions outlined in this section to determine
what the meta-variables stand for. If there are multiple meta-variables of the same kind, we use a
subscripted index.

The symbols τ, T and α are used as identifiers for type expressions, constructors and variables,
respectively. Instead of τ, we also use κ for type expressions in some places. Data type and type
synonym declarations will usually be named D or S. Analogously e, C and x are used for expressions,
constructors and variables. Alternatively, y is used for variables as well. Function declarations are
called f by convention. We use ˝ for infix operators. A lower case c is used for the name of a data
constructor in Coq. The lower case c should differ from the corresponding capital C only in that its
first letter is converted to lower case. E.g. if Ci = Foo for some index i, then ci will be foo.

We are also using the meta-variables Shape and Pos for the identifiers of the arguments of the free
monad. They are passed explicitly as parameters to generated Coq sentences.

2.3.3 Notation for renamed identifiers

Not all Haskell identifiers are valid Coq identifiers and need to be renamed if necessary. For example
with could be used in Haskell as the name for a function or variable, but not in Coq as with is a
keyword in Coq.

Similarly, Haskell allows types and constructors to have the same name because their namespaces are
separated. Since Coq is a dependently typed language, types in Coq can contain values. Therefore,
Coq constructors can conflict with types of the same name and need to be renamed as well.

Details on how identifiers are renamed will be given in Section 4.6.2. For the time being, we will
simply write I1 for the renamed version of a Haskell identifier I. For short, we write e1 or τ1 for an
expression e or type expressions τ in which all identifiers have been renamed appropriately.

2.4 Assumptions

Since it would be error-prone and infeasible to support the complete language specification of Haskell,
we make assumptions about input modules that simplify the translation to Coq. Effectively, we specify
a subset of Haskell that we are going to focus on for the remainder of this thesis. The language
supported by our compiler is based on the Haskell 2010 Language Report (Marlow, 2010). As a
general requirement, we specify that all input modules should be valid Haskell modules, i.e., the GHC
should be able to compile the module successfully. However, just a small selection of expressions and
declarations is actually permitted. There is neither support for language extensions nor type classes.

2.4.1 Data Type Declarations

For the definition of custom data types, we allow the usage of data declarations. No newtype decla-
rations are supported. Furthermore, the constructors of the data type do not support record syntax.
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Hence, a declaration of a data type D with n type arguments α1 through αn and m constructors C1
through Cm has the following form.

data D α1 . . . αn =

C1 τ1,1 . . . τ1,p1

| C2 τ2,1 . . . τ2,p2

| . . .
| Cm τm,1 . . . τm,pm

Since type classes are not allowed, there is no deriving clause.

Constructors can be written in infix notation, but we do not allow the usage of symbolic names. For
example, the left definition of a "rose tree" below is not allowed and must be declared as show to the
right.

{- INALID -}

data Rose a = a :> [Rose a]

{- VALID -}

data Rose a = a `Rose` [Rose a]

2.4.2 Type Synonym Declarations

In addition to data type declarations, user-defined types can be introduced using type declarations.
A declaration of a type synonym S with n type arguments α1 through αn has the following form.

type S α1 . . . αn = τ

2.4.3 Function Declarations

In Haskell functions are usually defined by performing pattern matching over their arguments. For
example, boolean negation can be defined by two rules, each matching one of Bool’s constructors.

not True = False

not False = True

For simplicity, we restrict pattern matching to the right-hand side of function declarations (see also
Section 2.4.5). Therefore, all function declarations consist of exactly one rule and the arguments on
the left-hand side are variable patterns.

f x1 . . . xn = e

In the example above, not would have to be defined as follows.
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not x = case x of

True -> False

False -> True

Guards and local declarations, i.e., where clauses, are not permitted.

Functions can be written in infix notation, but we do not allow the definition of custom operators.
For example, the left definition of list concatenation below is not allowed and must be declared as
show to the right.

{- INVALID -}

(++) :: [a] -> [a] -> [a]

xs ++ ys = {- ... -}

{- VALID -}

append :: [a] -> [a] -> [a]

xs `append` ys = {- ... -}

In addition to function bindings – that were covered above, the Haskell Report defines so called pattern
bindings (Marlow, 2010, p. 53). Pattern bindings are declarations that bind variables in patterns to
values. For example, the following pattern binding binds the value 42 and True to the variables x and
y, respectively.

(x, y) = (42, True)

Since we allow only explicit pattern matching on the right-hand side of function declarations, all
pattern bindings have the following form, i.e., coincide with nullary function declarations.

x = e

2.4.4 Type Signatures and Kinds

As performing type inference is beyond the scope of this thesis, we assume Haskell programs to be
correctly typed. Nevertheless, type information is needed for the translation to Coq. Consequently,
we require explicit type signatures for all function declarations to be present.

Similar to how type inference checks the types of functions and expressions, kind inference is a
mechanism to check the validity of type expressions (Marlow, 2010, p. 37). A kind can be thought of
as the type of a type. The kind of nullary type constructor is denoted *. A type constructor that takes a
type argument of kind κ1 and produces a type of kind κ2 is denoted κ1 -> κ2. Just like type inference,
kind inference is beyond the scope of this thesis as well. However, the kinds of type variables are not
explicitly annotated. Therefore, we assume all type variables to be of kind *. Consequently, all n-ary
type constructors are of kind * -> . . . -> *︸ ︷︷ ︸

n-times

-> *.

For example, the following type synonym that introduces an alias for type constructor application is
not allowed because the kind of the type variable t1 is * -> *.

{- INVALID -}

type App t1 t2 = t1 t2
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This is not really a restriction, as in real applications the usage of type variables as type constructors
is usually only useful in conjunction with type classes.

2.4.5 Pattern Matching

As mentioned above, pattern matching must be performed explicitly on the right-hand side of func-
tion declarations using case expressions. We further restrict patterns in case expressions to shallow
constructor patterns, i.e., all patterns have the form C x1 . . . xn, where C is an n-ary constructor and
x1 through xn are variable patterns. As we neither allow guards nor where clauses, case expressions
have the following form.

case e of

C1 x1,1 . . . x1,p1 -> e1
C2 x2,1 . . . x2,p2 -> e2
. . .
Cm xm,1 . . . xm,pm -> em

Moreover, we assume pattern matching to be exhaustive. If e is of type D τ1 . . . τn, then D must be a
data type with exactly m constructors.

data D α1 . . . αn =

C1 τ1,1 . . . τ1,p1

| C2 τ2,1 . . . τ2,p2

| . . .
| Cm τm,1 . . . τm,pm

Runtime errors that occur due to non-exhaustive patterns must be modeled explicitly by invoking
one of the predefined functions undefined or error.

head :: [a] -> a

head xs = case xs of

[] -> error "head: empty list"

x : xs' -> x

2.4.6 Expressions

In addition to case expressions, if expressions and lambda abstractions are supported. In case of
lambda abstractions, the same restrictions regarding pattern matching apply as to function declara-
tions, i.e., their arguments must be variable patterns. Therefore, lambda abstractions have the form
\x1 . . . xn -> e.

There is no support for local declarations using let expressions.
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2.4.7 Predefined operations and data types

Haskell’s Prelude offers a rich set of predefined data types and operations. We do not aim to recreate
the entire Prelude but still want to expose some commonly used functionalities. Table 2.1 lists all
predefined data types and the corresponding constructors supported by our compiler.

Table 2.1. Predefined data types and their constructors.

Name Type Constructors

unit () ()

pairs (τ1, τ2) (,)

lists [τ] [] and (:)

booleans Bool True and False

integers Integer

We are especially interested in data types with their own syntax, namely, lists, pairs and the unit type.
That these data types have their own notation can be seen as a strong indicator for their importance in
actual Haskell code. Internally, we will not handle these types any different from user-defined types
and constructors, i.e., the following identities hold.

[τ] = [] τ @τ type expression

(τ1, τ2) = (,) τ1 τ2 @τ1, τ2 type expression

In addition to the constructors, there is a more concise notation for lists and pairs.

[e1, e2, . . ., en] = e1 : (e2 : (. . . : (en : []). . .)) @e1, e2, . . . , en expression (2.4.1)

(e1, e2) = (,) e1 e2 @e1, e2 expression (2.4.2)

Furthermore, Table 2.1 lists Bool and Integer as predefined data types. In theory Bool and its con-
structors True and False could be defined by the user. However, Bool is important for the translation
of if expressions. Due to the lack of type classes, Integer will be used as the type for all numeric
literals, i.e., there are no fixed-precision integers of type Int. Decimal, hexadecimal and octal notation
can be used.

The following commonly used operations for Bool and Integer are build into the compiler.

Ź Arithmetic operations: addition (+), subtraction (-), multiplication (*), exponentiation (^) and
negation (using the negate function or unary minus operator).

Ź Boolean operations: conjunction (&&) and disjunction (||)

Ź Comparison of integers: (<=), (<), (==), (/=), (>=), (>)

Floating point numbers, other literals such as Strings and tuples with more than two elements are
not supported yet. Invocations of the error function are the only exception. Even though strings are
otherwise not officially supported, the argument of error is allowed to be a string literal.
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Apart from the predefined data types, constructors and operations mentioned in this section, all
Haskell modules must be self contained. In particular, import declarations are not supported.

19





Chapter 3

Translation Rules

This chapter deals with the specification and explanation of the translation rules that govern the
generation of Coq code from Haskell modules. The translation rules lay the theoretical basis for the
implementation of our compiler presented in Chapter 4. The first two sections cover the translation of
type expressions and declarations while the next two sections addresses the translation of expressions
and function declarations. The translation rules are based for the most part on work by Abel et al.
(2005). In the final section, an extension to the translation is presented that allows for the generation
of templates for Coq theorems from QuickCheck properties.

3.1 Type Expressions

A computation in Haskell does not necessarily produce a value but can also result in an effect, for
example due to partiality. Coq on the other hand does not support such implicit effects. As discussed
before, we bypass this restriction by modeling effects using the free monad in Coq. This fact needs to
be reflected on type-level as well. Therefore, every Haskell type τ is lifted into the free monad during
the translation.

τ: = Free Shape Pos τ1

However, the translation rule above is incomplete when we take higher-order functions into account.
Consider for example the following function declaration.

map :: (a -> b) -> [a] -> [b]

map f xs = {- ... -}

The parameter xs is of type [a] and does not pose any problem. Assuming List is the Coq type
constructor corresponding to [] (i.e., []1 = List), we can translate the type of xs as follows.

[a]: = Free Shape Pos (List a)

Lifting the type of xs to the free monad allows an application of map to pass an effectful computation
as the second argument. If we define the constructors of List appropriately (see Section 3.2), the list
items can also have effects themselves. We do not have to lift the type argument a explicitly.

The parameter f is different, though. While it is correct to lift the type of f, i.e., a Ñ b, into the
free monad such that potential effects in the first argument of map can be handled, doing so is not
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sufficient.
(a Ñ b): = Free Shape Pos (a Ñ b)

The argument in an application of f could have an effect as well and its result is also potentially
effectful. In case of xs, the List constructors took care of lifting the item types. However, we do not
provide a type constructor for -> that does the same for functions. Therefore, we need to lift the
argument and return type of f explicitly.

(a Ñ b): = Free Shape Pos (Free Shape Pos a Ñ Free Shape Pos b)

In general, the argument and return types of all arbitrarily deeply nested function types in τ need to
be lifted. For this purpose, we introduce another translation operation τ˚ as shown in Figure 3.1.

τ: = Free Shape Pos τ˚ @τ type expression (3.1.1)

(τ1 Ñ τ2)
˚ = τ1

: Ñ τ2
: @τ1, τ2 type expression (3.1.2)

(τ1 τ2)
˚ = τ1

˚ τ2
˚ @τ1, τ2 type expression (3.1.3)

T˚ = T1 Shape Pos @T type constructor (3.1.4)

α˚ = α1 @α type variable (3.1.5)

Figure 3.1. Final translation rules for type expressions.

The ˚ operation recursively lifts the argument and return types of function types contained in τ.
Additionally, the parameters Shape and Pos are passed to type constructors. That is, in the example
above, the type of xs would be translated as follows.

[a]: = Free Shape Pos (List Shape Pos a)

List must be provided with Shape and Pos to lift the argument types of its constructors. Otherwise,
list items would not be allowed to be effectful. The translation of data types and their constructors
will be elaborated on in the next section.

3.2 Type Declarations

This section covers the translation of type synonyms and data type declarations.

Since the order of declarations matters in Coq, special care needs to be taken to translate only decla-
rations whose dependencies were translated before. We say that a type expression τ depends on the
declaration of a type constructor T (e.g., the name of a type synonym or data type declaration) if τ
contains an application of the type constructor T. For short, we also say that τ depends on or uses T.
A type synonym now depends on all type constructor used by its right-hand side. Likewise, a data
type declaration depends on all type constructors used by the fields of its data constructors.

For simplicity, we will first consider only individual declarations and assume all additional data
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types used by our examples to have been declared beforehand. At the end of this section, we describe
how to translate multiple type declarations without introducing dependency related issues to the
generated Coq code. We also extend the translation rules to support mutually recursive declarations
in the final subsection.

3.2.1 Type Synonym Declarations

Type synonyms can be used in Haskell to give a name to a more complex type expression. Similarly,
we can use a Definition-sentence to assign a name to a term in Coq. As Coq does not distinguish
types and terms, declarations of type synonyms can be simply translated to Definition-sentences as
shown in Figure 3.2.

(type S α1 . . . αn = τ): = Definition S1 (Shape : Type) (Pos : Shape -> Type)

(α1
1 . . . α1

n : Type)

: Type

:= τ˚.

Figure 3.2. Translation rule for n-ary polymorphic type synonym declarations.

The parameters Shape and Pos have to be added such that the translated type can use the free monad
or other data types. For example, the following type synonym

type Queue a = List a

needs Shape and Pos when translated to Coq because they need to be passed to List.

Definition Queue (Shape : Type) (Pos : Shape -> Type) (a : Type) : Type

:= List Shape Pos a.

On the right-hand side of the Definition-sentence in Figure 3.2 the ˚ translation is applied instead
of :. We have to use ˚ because we desire the expansion of type synonyms in Haskell and Coq to
be compatible with respect to the : translation. To convince ourselves that the translation rule above
fulfills this property let’s denote the expansion of type synonyms in Haskell and Coq with βH and
βC, respectively, and show that for all type synonyms type S α1 . . . αn = τ and type expressions
τ1, . . . τn the following holds true.

βH(S τ1 . . . τn)
: = βC((S τ1 . . . τn)

:)

For the instantiation of S and S1, we first define substitutions σ and σ1.

σ := { α1 ÞÑ τ1, . . . , αn ÞÑ τn }
σ1 := { α1

1 ÞÑ τ1
˚, . . . , α1

n ÞÑ τn
˚ }
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Now we can prove the proposition by applying the translation rules for types presented in the previ-
ous section.

βH(S τ1 . . . τn)
: = σ(τ): (expansion of S)

= Free Shape Pos σ(τ)˚ (Equation 3.1.1)

= Free Shape Pos σ1(τ˚) (‹)

= βC(Free Shape Pos (S1 Shape Pos τ1
˚ . . . τn

˚)) (undo expansion of S1)

= βC(Free Shape Pos (S τ1 . . . τn)
˚) (Equation 3.1.3 and 3.1.4)

= βC((S τ1 . . . τn)
:) (Equation 3.1.1)

The equation marked with (‹) follows from the following property of σ and σ1.

σ(αi)
˚ = τi

˚ = σ1(α1
i) = σ1(αi

˚) @i P { 1, . . . , n }

We assume without a proof that this property holds for the extensions of σ and σ1 as well.

3.2.2 Data Type Declarations

So far we have described how to translate type expressions and assign names to them, but we are
not able to actually define our own data types. One of the simplest kinds of data types that can be
defined in Haskell are so called sum types. A well known example for a sum type is Bool which is
commonly defined as follows.

data Bool = True | False

In general, the constructors of a sum type do not have any arguments and are enumerated on the
right-hand side of a data type declaration. In Coq data types are defined using Inductive-sentences in
a very similar fashion to data declarations in Haskell. The Bool type could look like this for example.

Inductive Bool : Type

:= true : Bool

| false : Bool.

Apart from the concrete syntax, the main difference is that the type of the constructors is annotated
explicitly. In contrast to Haskell, we follow the Coq convention to choose lower case names for the
constructors.

Sum types on their own are usually not very useful. Instead, one wishes to compose existing data
types to more interesting data structures. Such types are referred to as product types. If there was for
instance a type Double that represents floating point numbers, we could compose two such numbers
to model a complex number.
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data Complex = Complex Double Double

This time the constructor Complex is not a constant like True but a function that takes two values of
type Double and produces a Complex number.

GHCi> :t Complex

Complex :: Double -> Double -> Complex

This insight is important, as we need to annotate the full type of the constructor in Coq again. By
applying the translation rules for types we would obtain the following Coq type for the constructor.

(Double Ñ Double Ñ Complex)˚ = Double: Ñ (Double Ñ Complex): (Equation 3.1.2)

= Double: Ñ Free Shape Pos (Double Ñ Complex)˚

(Equation 3.1.1)

Wrapping the return type of a constructor is not allowed in Coq, though. However, it is not necessary
for us to lift the intermediate results of the constructor either. Lifting them would be redundant as
(partial) constructor applications never have an effect in Haskell. Therefore, it is sufficient to lift the
argument types of the constructor (which could indeed be effectful). For this purpose, we still need
to add the parameters Shape and Pos to the generated sentence.

Inductive Complex (Shape : Type) (Pos : Shape -> Type) : Type

:= complex : Free Shape Pos (Double Shape Pos)
-> Free Shape Pos (Double Shape Pos)
-> Complex Shape Pos.

Haskell allows us to use parametric polymorphism to generalize from this example and define pairs of
two arbitrary types.

data Pair a b = Pair a b

Analogously to how we added the parameters Shape and Pos above, we can also introduce the type
variables a and b in the header of the Inductive-sentence.

Inductive Pair (Shape : Type) (Pos : Shape -> Type) (a b : Type) : Type

:= pair : Free Shape Pos a

-> Free Shape Pos b

-> Pair Shape Pos a b.

We wrap the binders of a and b in regular parentheses, because we want to pass the type arguments
explicitly to Pair when we instantiate the data type. However, Coq also adds all parameters of the
Inductive-sentence to the constructors automatically, i.e., pair takes four additional parameters.

Check pair.

(* ==> pair : forall (Shape : Type) (Pos : Shape -> Type) (a b : Type),

Free Shape Pos a -> Free Shape Pos b -> Pair Shape Pos a b *)

25



3. Translation Rules

For convenience, we can "hide" those arguments using an Arguments-sentence.

Arguments pair {Shape} {Pos} {a} {b}.

Coq will then try to infer the values of Shape, Pos, a and b from the context as well as the types of the
remaining arguments.

Both Haskell and Coq do not require us to distinguish sum and product types. For example, we can
combine both concepts to define a data type for optional values.

data Maybe a = Nothing | Just a

As shown in Figure 3.3, an arbitrary data type can be translated similar to how we translated product
types above. Just as with sum types, additional constructors are separated by a vertical bar.


data D α1 . . . αn

= C1 τ1,1 . . . τ1,p1
| . . .
| Cm τm,1 . . . τm,pm


:

=

Inductive D (Shape : Type) (Pos : Shape -> Type)

(α1
1 . . . α1

n : Type) : Type

:= c1
1 : τ1,1

: -> . . . -> τ1,p1
: -> (D α1 . . . αn)

˚

| . . .
| c1

m : τm,1
: -> . . . -> τm,pm

: -> (D α1 . . . αn)
˚
.

Figure 3.3. Translation rule for n-ary polymorphic data type declarations with m constructors. In Coq we are
using renamed lower case variations c1

i of the Haskell constructors Ci.

If we apply this translation rule to our Maybe data type, we obtain the following Inductive-sentence
for example.

Inductive Maybe (Shape : Type) (Pos : Shape -> Type) (a : Type) : Type

:= nothing : Maybe Shape Pos a

| just : Free Shape Pos a -> Maybe Shape Pos a.

Before we conclude this section, notice that we are using the ˚ translation for the return type of
constructors in Figure 3.3. We have to do so because : would lift the type to the free monad but Coq
does not allow us to wrap the return type of constructors as we pointed out above already. However,
we are usually interested in lifted values. With that end in view, we define a function for each regular
constructor that simply applies the constructor and lifts its result using the pure constructor of the
free monad. We are going to refer to these functions as smart constructors hereinafter. The smart
constructor for just would look as follows.

Definition Just (Shape : Type) (Pos : Shape -> Type) {a : Type}

(x : Free Shape Pos a)

: Free Shape Pos (Maybe Shape Pos a)

:= pure (just x).
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This time we are using upper case identifiers again. Unlike with regular constructor, we do not
have to generate an Arguments-sentence for the smart constructor. Generating Arguments-sentence is
not necessary as we can mark the type argument as implicit directly in the Definition-sentence
by wrapping its binder in curly braces. The general generation scheme for smart constructors and
Arguments-sentences is summarized in Figure 3.4. In case of Just, we were able to manually choose
appropriate names for the arguments of the smart constructor. However, when we generate those
sentences, we need to generate fresh identifiers automatically. The generation of fresh identifiers will
be covered in Section 4.6.2.

Arguments c1 {Shape} {Pos} {α1} . . . {αn}.

Definition C1 (Shape : Type) (Pos : Shape -> Type) {α1 . . . αn : Type}

(x1 : τ1
:) . . . (xp : τp

:)

: (D α1 . . . αn)
:

:= pure (C x1 . . . xp).

Figure 3.4. Additional sentences to generate for each data constructor C τ1 . . . τp of a data type D α1 . . . αn. c1

refers to the renamed lower case constructor name. x1, . . . , xp are fresh identifiers.

3.2.3 Handling Mutually Recursive Type Declarations

In Haskell the order of declarations does not matter. Therefore, A is allowed to use B in the following
example, even though B is declared after A.

data A = A B

data B = B

In Coq, on the other hand, the order of declarations is relevant. If we convert the example to Coq, the
declaration of B must precede the declaration of A.

Fail Inductive A (Shape : Type) (Pos : Shape -> Type) : Type := a : B: -> A˚.

(* ==> The command has indeed failed with message:

The reference B was not found in the current environment. *)

Inductive B (Shape : Type) (Pos : Shape -> Type) : Type := b : B˚.

For this reason, we have to analyse the dependencies of all data type declarations in the Haskell
module before we translate them to Coq. As a first approach, we can simply sort the declarations
according to their dependencies. In the example above, we would obtain the list [B, A] of sorted data
type declarations. Translating the declarations in that order, yields a valid Coq program.

Inductive B (Shape : Type) (Pos : Shape -> Type) : Type := b : B˚.

Inductive A (Shape : Type) (Pos : Shape -> Type) : Type := a : B: -> A˚.

This approach also suffices to translate simple recursive data types such as List.
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data List a = Nil | Cons a (List a)

A data type is called recursive if values of that type are used to construct new values of the same
type. As Coq allows Inductive-sentences to use the data type that is declared in the same sentence,
we can apply the existing translation rule in such cases directly.

Inductive List (Shape : Type) (Pos : Shape -> Type) (a : Type) : Type

:= nil : List Shape Pos a

| cons : Free Shape Pos a -> Free Shape Pos (List Shape Pos a) -> List Shape Pos a.

However, the approach above fails in case of mutually recursive data types.

data Tree a = Tree a (Forest a)

data Forest a = Empty | NonEmpty (Tree a) (Forest a)

The declarations of Tree depends on the declaration of Forest and vice versa. Regardless of which
data type we choose to translate first, Coq will reject the generated code as the other one will be
undefined. As we have seen in case of ordinary recursive data types like List, Coq allows us to use
the data type defined by an Inductive-sentence within that sentence. Thus, we need a mechanism
to define both Tree and Forest in the same Inductive-sentence, such that they can use each other.
Coq offers the with keyword for this purpose. The with keyword is used to concatenate multiple
Inductive-sentences to a single sentence. In the example above, the following would work.

Inductive Tree (Shape : Type) (Pos : Shape -> Type) (a : Type) : Type

:= tree : Free Shape Pos a -> Forest Shape Pos a -> Tree Shape Pos a

with Forest (Shape : Type) (Pos : Shape -> Type) (a : Type) : Type

:= empty : Forest Shape Pos a

| nonEmpty : Free Shape Pos (Tree Shape Pos a) -> Forest Shape Pos a.

The question that remains is how we can identify mutually recursive data type declarations. For this
purpose, we represent the dependencies among the data types as a directed graph. The nodes of the
dependency graph correspond to data type and type synonym declarations. There is an edge between
the nodes of two declarations D1 and D2 if and only if D1 depends on D2. The dependency graphs
for the data type declarations covered in this subsection so far are depicted in Figure 3.5.
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A

B

List Tree

Forest

Figure 3.5. Dependency graphs for the data types A and B, List as well as Tree and Forest as defined above.

If there is an edge between D1 and D2, D2 needs to be declared before or in the same sentence as
D1. The same is true if there is a path from D1 to D2. Hence, both must be declared in the same
sentence if a path from D2 to D1 exists as well. In our concrete examples that means that B needs
to be declared before A because there is an edge from A to B. It would also be okay to declare them
in the same sentence. Tree and Forest on the other hand definitely need to be declared in the same
sentence, as the corresponding nodes are reachable from each other.

In graph theory a set of nodes with the property that all nodes within the set are reachable from all
other nodes within the set is referred to as a strongly connected component of the graph. In our case
that means that all declarations whose nodes form a strongly connected component of the depen-
dency graph need to be declared in the same sentence. Likewise, if two declarations depend on each
other – and therefore need to be declared in the same sentence – they are also necessarily in the same
strongly connected component. Thus, the identification of mutually recursive data type declarations
coincides with the identification of strongly connected components of the dependency graph. There
are algorithms to compute strongly connected components in linear time. As a final step, the identi-
fied strongly connected components need to be sorted. If the component SCC1 contains at least one
declaration that depends on a declaration in SCC2, SCC2 should precede SCC1. This order also is
referred to as reverse topological order and can be solved in linear time as well. In our case we obtain
the following sorted lists of strongly connected components.

[{ B }, { A }] [{ List }] [{ Tree, Forest }]

There is one additional caveat to be aware of. Until now, we only considered mutually recursive data
type declarations. We did not consider mutually recursive type synonym declarations because type
synonym declarations are not allowed to form a cycle on their own. Thus, the following is invalid in
Haskell.

type A = B

type B = A

However, it is perfectly fine for a type synonym declaration to be part of a cycle formed by data type
declarations. For example, one may notice that the Forest data type we defined earlier, can also be
expressed in terms of List.
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data Tree a = Tree a (Forest a)

type Forest a = List (Tree a)

Again, Tree and Forest form a strongly connected component of the dependency graph. Unlike before,
we cannot use the with keyword in this case. Tree is translated to an Inductive-sentence while Forest

is translated to a Definition-sentence. Unfortunately, with can only be used to join two or more
Inductive-sentences. The solution is to expand type synonyms that occur within such a strongly
connected component. After this preprocessing step, we obtain the following Haskell declarations.

data Tree a = Tree a (List (Tree a))

type Forest a = List (Tree a)

Forest still depends on Tree and needs to be translated afterwards. However, Tree can now be trans-
lated independently as can be seen in Figure 3.6.

TreeForest

List

[{ List }, { Tree, Forest }]

Tree

List

Forest

[{ List }, { Tree }, { Forest }]

Figure 3.6. Dependency graphs for Tree and Forest before inlining the type synonym Forest into the definition
of Tree (left) and after inlining (right). Strongly connected components are listed in reverse topological order
below the graphs.

If there are more than one type synonyms in the strongly connected component, we need to sort
them with respect to their dependencies among each other. But as pointed out above, we can be
sure in those cases that they do not form a cycle themselves. Therefore, it is fine to translate them
individually as we did before.

3.3 Expressions

Starting with this section we direct our attention away from type-level language constructs. Instead,
we will have a look at the translation of expressions. Nevertheless, we have to keep the translation
rules for types in mind. We have to do so because we wish the translation of expressions to be
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compatible with the translation of expressions. In other words, when an expression e of type τ is
translated to Coq, the resulting term e: must be of type τ:. When designing the translation rules for
expressions, we have to make sure that this invariant is preserved at all times.

e :: τ ùñ e: : τ: (invariant)

3.3.1 Variables

In the simplest case, the expression is just a variable x. As mentioned before, when translating x to
Coq, we may have to rename x to avoid name conflicts.

x: = x1

If we design the translation rules that are concerned with binding variables correctly, the invariant
holds automatically. For example, when we perform pattern matching on a list (as defined in the
previous section) the pattern cons x xs binds the variables x and xs to values of type a: and (List a):,
respectively. However, as we will see later, there are some rare cases in which we need unlifted
variables, i.e., variables of type τ˚. In this case, we have to manually lift x1 to restore the invariant.
Thus, the final translation rule for variables are as shown in Figure 3.7.

x: =

{
x1 if x1 : τ:

pure x1 if x1 : τ˚

Figure 3.7. The translation of a variable x depends on the type x1 has been bound to in Coq.

3.3.2 Function Applications

In general, a function application has the form e1 e2 in Haskell where e1 is of some function type
τ1 Ñ τ2 and e2 is of type τ1. The application of e1 to e2 yields a value of type τ2. If we now translate
both expressions to Coq, the invariant guarantees us to obtain lifted values.

e1
: : (τ1 Ñ τ2)

:
ùñ e1

: : Free Shape Pos (τ1
: Ñ τ2

:)

e2
: : τ1

:

If we had a value f of type τ1
: Ñ τ2

:, we could apply f to e2
: to obtain a value of type τ2

: which
would satisfy the invariant. As e1

: is lifted to the free monad, we cannot access the contained function
directly but have to use the bind operator to unwrap the function as shown in Figure 3.8.

(e1 e2)
: = e1

: >>= (fun f => f e2)

Figure 3.8. General translation rule for function applications. More specific rules will be introduced for the
application of constructors and defined functions below.
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Usually, functions do not take just a single argument, though. For example, consider the application
of a function f to n arguments.

( f e1 . . . en)
: = f : >>= (fun f1 => f1 e1

:)

...

>>= (fun fn => fn en
:)

As this example suggests, the rule above will cause the generation of code that is long and difficult to
comprehend. Moreover, binding the intermediate results is often superfluous because we know that
the partial application of a constructor or defined function will never have an effect in Haskell. For
this reason, Abel et al. (2005) suggest an optimization that allows the generation of more readable
code if a constructor or defined function is fully applied.

(C e1 . . . en)
: = C1 Shape Pos e1

: . . . en
:

( f e1 . . . en)
: = f 1 Shape Pos e1

: . . . en
:

Figure 3.9. Translation rule for the full application of a n-ary constructor C or defined function f .

We actually applied this optimization already during the generation of smart constructors. The con-
structor Just of the Maybe data type has the type a Ñ Maybe a for example. According to the invariant,
the expression Just should now be translated to a Coq term of type

(a Ñ Maybe a): = Free Shape Pos (a Ñ Maybe a)˚

However, the smart constructor Just has never been lifted to the free monad. Only its argument and
return types are monadic.

Check Just.

(* ==> Just : forall (Shape : Type) (Pos : Shape -> Type) (a : Type),

Free Shape Pos a -> Free Shape Pos (Maybe Shape Pos a) *)

Therefore, the application of Just does not involve the bind operator as shown in Figure 3.9. We
will apply the same optimization when we translate function declarations in the final section of this
chapter.

The only drawback is, that the optimization does not allow partial function applications so far. As
Abel et al. (2005) point out, this problem can easily be solved by performing η-abstractions until all
function applications are fully applied. An individual η-abstraction transforms a function f to an
equivalent function by wrapping f with a lambda abstraction and and passing the argument to f .

f ÝÑ
η

λx. f x

The full process is depicted in Figure 3.10. The right-hand side of both equations requires us to be able
to convert lambda abstractions to Coq. But before we examine the translation of lambda abstractions
next, let’s first look into another kind of function application: operator applications.
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(C e1 . . . em)
: = (\x1 -> . . . \xm´n -> C e1 . . . em x1 . . . xn´m)

:

( f e1 . . . em)
: = (\x1 -> . . . \xm´n -> f e1 . . . em x1 . . . xn´m)

:

Figure 3.10. Translation rule for the partial application of a n-ary constructor C or defined function f to m ă n
arguments.

Most binary operations such as (+) or (==) as well as the list constructor (:) are usually written
in infix rather than prefix notation. It is also possible to write custom functions in infix notation by
surrounding the function name in grave accents ("backticks" or "backquotes"). For example, instead of
div x y one can write x `div` y. When used properly, this notation can often increase the readability
of programs. Similarly, there is a unary minus prefix operator that can be used as syntactic sugar
for the application of the negate function from Haskell’s Prelude. As Figure 3.11 demonstrates, the
translation of operator applications is straightforward.

(e1 ˝ e2)
: = ((˝) e1 e2)

:

(-e): = (negate e):

Figure 3.11. Translation rules for operator applications based on the identities listed by the Haskell Report
(Marlow, 2010, p. 18).

However, in Haskell it is also possible to apply operators only partially. So called sections are written
as (e1 ˝) ("left section") or (˝ e2) ("right section"). A left section coincides with a regular partial ap-
plication of the operator. A right section on the other hand cannot be expressed in this way. Therefore,
we need to introduce the missing left argument in a similar way to an η-abstraction.

(e1 ˝): = ((˝) e1)
:

ÝÑ
η

(\x2 -> (˝) e1 x2)
:

(˝ e2)
: = (\x1 -> (˝) x1 e2)

:

Figure 3.12. Translation rules for left and right sections based on the identities listed by the Haskell Report
(Marlow, 2010, p. 19).

3.3.3 Lambda Abstractions

Let’s first consider a lambda abstraction \x -> e with a single argument. Such an unary lambda
abstraction can be represented in Coq by the term fun x1 => e:. However, we still need to wrap the
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function with the pure constructor of the free monad to make the invariant hold.

(\x -> e): = pure (fun x1 => e:)

If we now try to extend this rule to lambda abstractions \x1 . . . xn -> e with multiple arguments, we
cannot simply add more binders to the Coq function. The following would be valid Coq, but violates
our invariant.

pure (fun x1
1 . . . x1

n => e:)

The term above has the type

Free Shape Pos (τ1
: Ñ . . . Ñ τn

: Ñ τ:)

but should have the type

Free Shape Pos (τ1
: Ñ Free Shape Pos (. . . Ñ Free Shape Pos (τn

: Ñ τ:) . . .))

according to our invariant. Therefore, we have to wrap all intermediate results with pure. We can
do so by rewriting a lambda abstraction with multiple arguments to multiple nested unary lambda
abstractions as shown in Figure 3.13.

(\x -> e): = pure (fun x1 => e:)

(\x1 . . . xn -> e): = (\x1 -> . . . -> \xn -> e): (if n ą 0)

Figure 3.13. Translation rules for lambda abstractions.

3.3.4 case and if Expressions

In this subsection we cover both the translation of case and if expressions. Since both kinds of
expressions behave very similar, their translation rules are based on the same key ideas. In fact,
the Haskell Language Report defines the semantics of if expressions in terms of case expressions
(Marlow, 2010, p. 20).

if e1 then e2 else e3 = case e1 of { True -> e2 ; False -> e3 }

For simplicity, let’s first focus on the translation of if expressions.

Unlike before, we cannot base our translation rule for if expressions on the invariant. If the expression
if e1 then e2 else e3 has type τ, both e2 and e3 must also have type τ. If we naïvely translated the
expression by just translating e1 through e3, the resulting term

if e1
: then e2

: else e3
:

satisfies our invariant because e2
: and e3

: both have the type τ: and therefore the entire term has that
type. Interestingly, if we applied this naïve translation rule, the generated code works. However, the
generated code does not behave as intended.

Compute (if True: then e1
: else e2

:). (* ==> e1
:
*)

Compute (if False: then e1
: else e2

:). (* ==> e1
:
*)

Compute (if undefined: then e1
: else e2

:). (* ==> e2
:
*)
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This odd behaviour results from the flexibility of if expressions in Coq. Coq does not have a build-in
boolean type. Therefore, the condition of if expressions can be of any type with exactly two con-
structors (The Coq Development Team, 2018, p. 48). If the condition matches the first constructor, the
then branch is selected and the else branch otherwise. Since the type of e1

: is Free Shape Pos (Bool

Shape Pos) and Free has exactly two constructors pure and impure, e1
: can be used in if expressions.

The semantics of Coq’s if expressions fit the observation in the listing above. True and False are val-
ues without an effect. Therefore, their underlying representation uses the pure constructor which is
the first constructor of Free. undefined on the other hand does have an effect. The usage of the impure

constructor for the representation of effects leads to the else branch being selected if the condition is
undefined.

What we actually wanted is to test whether the value wrapped by the pure constructor is true or
false. Similar to how we had to unwrap a function expression before we could apply the actual
function, we have to bind the condition this time as well. The bind operation corresponds to the fact
that Haskell evaluates the condition to head normal form (Christiansen et al., 2019, p. 132) before
selecting the then or else branch.

(if e1 then e2 else e3)
: = e1

: >>= (fun (x : Bool:) => if x then e2
: else e3

:)

Figure 3.14. Translation rule for if expressions.

With the translation rule shown in Figure 3.14 we get the expected behaviour.

Compute (True: >>= (fun (x : Bool:) => if x then e1
: else e2

:)). (* ==> e1
:
*)

Compute (False: >>= (fun (x : Bool:) => if x then e1
: else e2

:)). (* ==> e2
:
*)

Compute (undefined: >>= (fun (x : Bool:) => if x then e1
: else e2

:)). (* ==> undefined:
*)

Note that we have to annotate the type of the fresh variable x in Figure 3.14 and in the examples
above explicitly. The type has to be annotated due to the flexibility of if expressions in Coq. While
we know in Haskell that x in if x then e1 else e2 has to be of type Bool, x could be of any type
with exactly two constructors in Coq. Therefore, Coq could not infer the type of the fresh variable
introduced during the translation of an expression like if undefined then e1 else e2.

Fail Compute (undefined: >>= (fun x => if x then e1
: else e2

:)).

(* ==> The command has indeed failed with message:

Cannot infer a type for this expression. *)

We can apply the main idea from the translation of if expressions to the translation of case expres-
sions. Instead of performing pattern matching on the free monad, we want to inspect the actual value.
Thus, we have to add the bind operator. This time we do not have to annotate the type explicitly be-
cause Coq should be able to infer the type from the constructors in the patterns. Aside from that,
the differences between pattern matching in Haskell and Coq shown in Figure 3.15 are mostly of
syntactical nature. The observed similarity stems from our initial assumptions. If we allowed guards
or nested patterns for example, the translation of case expressions would be much more difficult.

35



3. Translation Rules


case e of

C1 x1,1 . . . x1,p1 -> e1
...
Cn xn,1 . . . xn,pn -> en


:

=

e: >>= (fun x => match x with

| c1
1 x1

1,1 . . . x1
1,p1

=> e1
:

|
...

| c1
n x1

n,1 . . . x1
n,pn => en

:

end)

Figure 3.15. Translation rule for a case expression that performs pattern matching on an expression e whose type
has n constructors C1 through Cn. Note that we match the unwrapped Coq term with the regular constructors
c1

i , not the smart constructors C1
i .

The requirement of Coq that pattern matching must be total is also simply passed down to the user
of our compiler. Therefore, pattern matching failures must be handled explicitly using error terms.
The translation of said error terms to Coq is described next.

3.3.5 Error Terms

So far we have seen no way to introduce actual effects into our programs. As noted earlier, one
important effect that we would like to support is partiality. In Haskell partiality usually arises from
the usage of incomplete pattern matching. Due to our assumption that pattern matching is total, we
have to handle such cases explicitly.

head :: [a] -> a

head xs = case xs of [] -> error "head: empty list"

x : xs -> x

In general, Haskell provides two functions error and undefined that can be used to deliberately
cause runtime errors. If an application of one of those functions is evaluated, the program terminates
immediately (Marlow, 2010, p. 16). Additionally, a brief description for the cause of the error can be
passed to error as demonstrated in the example above already.

error :: String -> a

undefined :: a

The question is now how we can implement those two functions in Coq. The authors of hs-to-coq

for example do so by introducing a polymorphic value (or "axiom") patternFailure (Spector-Zabusky
et al., 2017, p. 10). However, as they point out themselves, this axiom is inherently unsound, i.e., can
be used to prove arbitrary propositions.

Local Axiom patternFailure : forall {a}, a.

Theorem contradiction: False.

Proof. apply patternFailure. Qed.
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For this reason, avoiding the introduction of such an axiom has been the very motivation for the
monadic transformation performed by our implementation. If we lifted our programs using the Maybe

monad for example, we do not need the axiom above, but can represent undefined with Nothing.

undefined :: Maybe a

undefined = Nothing

For the translation of undefined, we now just need to model the Maybe monad using the free monad,
i.e., instantiate Shape and Pos appropriately. How Shape and Pos would have to look like in case of
Maybe, has been shown in Section 2.2.3 already.

We can also use Nothing to implement error if we are willing to simply discard the error message.

error :: String -> Maybe a

error msg = Nothing

However, if we want to keep the error message, we need a different monad, i.e., have to instantiate
Shape and Pos differently. This alternative monad would not be limited to the translation of error as
we can express undefined in terms of error.

undefined :: a

undefined = error "undefined"

As we want to leave the choice of the concrete monad to the user, we abstract from the instantiation of
Shape and Pos using a type class. Instances of the type class contain the implementation of undefined
and error for the monad represented by Shape and Pos.

Require Import Coq.Strings.String.

Class Partial (Shape : Type) (Pos : Shape -> Type) :=

{

undefined : forall {A : Type}, Free Shape Pos A;

error : forall {A : Type}, string -> Free Shape Pos A

}.

The code generated by the rules in Figure 3.16 uses the interface of Partial. Therefore, the generated
code works with any monad for which such an instance can be defined. For example, we can define
a Partial instance for the Maybe monad by implementing both error and undefined with Nothing. In
contrast, no Partial instance can be specified for the Identity monad.

undefined: = undefined

(error msg): = error msg

Figure 3.16. Translation rules for error terms. Both rules require an instance of the Partial type class for Shape
and Pos to be available in the current context.
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3.3.6 Literals

The last kind of expression whose translation we did not cover yet are literals. We support list, pair
and integer literals. As mentioned in Section 2.4 already, list and pair literals are just syntactic sugar
for the application of their constructors. Thus, we can specify their translation rules directly as listed
in Figure 3.17.

[e1, e2, . . ., en]
: = (e1 : (e2 : (. . . : (en : []). . .))):

(e1, e2)
: = ((,) e1 e2)

:

Figure 3.17. Translation rules for list and pair literals as derived from Equation 2.4.1 and Equation 2.4.2.

However, before we can specify how to translate integer literals we have to find an appropriate
representation for the type Integer in Coq first. The Haskell to Coq compiler developed by Jessen
(2019) does not support Integer but translates Int with nat. The type nat is defined in Coq’s standard
library and represents natural numbers.

Inductive nat : Type

:= O : nat

| S : nat -> nat.

There are two problems that make nat unsuitable for the representation of integers. First of all, nat
can represent arbitrarily large numbers whereas the size of Int is bounded in Haskell. Even more
problematic is the fact that the exact upper bound is not specified. Nowadays integers are 64 bits
wide on most machines.

GHCi> maxBound :: Int

9223372036854775807

Haskell only guarantees at least 30 bits of precision for Int, though (Marlow, 2010, p. 181). Proofs
would therefore be implementation specific. For this reason, we avoid Int and use Integer instead.
Similar to nat, Integer has no upper bound. The second problem that remains is that nat cannot
represent negative numbers. While nat represents N, Integer corresponds to Z. Therefore, the type
Z from the ZArith library is used by hs-to-coq instead of nat 1.

Require Export ZArith.

Definition Integer := Z.

We adapt their code slightly such that the definition is compatible with our translation of custom
data type and type synonym declarations. To do so, the parameters Shape and Pos must be added
even though Integer does not need them.

1https://github.com/antalsz/hs-to-coq/blob/0cd052b8162ea53611871d7be3bf186cc38a4a74/hs-to-coq/examples/ghc-base/GHC/Num.v#L4
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Definition Integer (Shape : Type) (Pos : Shape -> Type) : Type := Z.

The actual integer literals can now be translated by using the numeral notation for Z. In contrast to
Haskell, Coq does not support hexadecimal or octal notation. Thus, we have to convert integer literals
to decimal notation first. By default number literals are interpreted as values of type nat by Coq. To
create a value of type Z, we have to append the suffix %Z.

Check 42. (* ==> 42 : nat *)

Check 42%Z. (* ==> 42%Z : Z *)

Since Integer Shape Pos is just a synonym for Z, 42%Z is also of type Integer˚. To fulfill our invariant,
we finally need to lift the value into the free monad.

i: = pure i1%Z

Figure 3.18. Translation of an integer literal i. The decimal value of i is denoted i1.

3.4 Function Declarations

In this section we will cover the translation of the eponymous component for functional programming
languages: function declarations.

Just as with type declarations the order of function declarations matters in Coq as well. Thus, we
have to perform a dependency analysis again. Although the basic principles of the dependency anal-
ysis still apply, adding support for recursive and mutually recursive functions is more involved this
time. The additional complexity arises from the fact that Coq strictly distinguishes recursive and
non-recursive function declarations. Therefore, it is not sufficient to simply concatenate generated
sentences. Instead, we have to apply a completely different translation scheme to recursive function
declarations. For this reason, we will focus on non-recursive function declarations first. The transla-
tion of recursive functions is covered in the second half of this section. In the last section, there are
some remarks regarding the translation of partial functions.

3.4.1 Non-Recursive Functions

In order to recall the basic structure of function declarations in Coq, consider the following imple-
mentation of boolean negation without monadic lifting.

Definition not (b : bool) : bool :=

match b with

| true => false

| false => true

end.
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Unlike in Haskell, there are not multiple rules and pattern matching is performed explicitly on the
right-hand side using match expressions. The return type of the function as well as the types of its
arguments are annotated inside the declaration itself. Due to our assumptions, i.e., that there is only
one rule and the parameters are variable patterns, all Haskell function declarations we are concerned
with already look remarkably similar to the Definition sentences that we need to generate.

f :: τ
f x1 . . . xn = e

The main difference here is that the type signature is independent of the actual function declaration.
If we had a type signature of the form f :: τ1 -> . . . -> τn -> τ, we could apply the translation
proposed in Figure 3.19 directly. Note that we implicitly apply the optimization by Abel et al. (2005)
again, i.e., the type of the converted function is not (τ1 Ñ . . . Ñ τn Ñ τ): but τ1

: Ñ . . . Ñ τn
: Ñ τ:.

(
f :: τ1 -> . . . -> τn -> τ
f x1 . . . xn = e

):

=

Definition f 1 (Shape : Type) (Pos : Shape -> Type)

{α1
1 . . . α1

m : Type}

(x1
1 : τ1

:) . . . (x1
n : τn

:)

: τ:

:= e:.

Figure 3.19. Translation rule for a n-ary polymorphic function declaration with m type variables. The types τ1
through τn are the types of the variables x1 through xn, respectively.

However, in general the type signature does not necessarily have that format due to the potential
usage of type synonyms. Consider for example the following function declaration.

type Predicate a = a -> Bool

nonZero :: Predicate Integer

nonZero n = n /= 0

To determine the type of n as well as the return type of nonZero, we need to expand the type syn-
onym Predicate Integer. Not all type synonyms need to be expanded, though. Our current approach
suffices to determine the argument and return types the following two functions.

testZero :: Predicate Integer -> Bool

testZero p = p 0

greaterThan :: Integer -> Predicate Integer

greaterThan n = (> n)

The rule shown in Figure 3.20 expands only those type synonyms that need to be expanded in order
to determine the type of an argument. In the example above, : would expand the type of nonZero to
Integer -> Bool but leaves the type of both testZero and greaterThan unchanged.
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(
f :: τ1 -> . . . -> τi -> S κ1 . . . κm
f x1 . . . xn = e

):

=

(
f :: τ1 -> . . . -> τi -> σ(κ)
f x1 . . . xn = e

):

@i ă n

Figure 3.20. A demand driven approach to the expansion of type synonyms in n-ary function declarations. We
assume that there is type synonym declaration type S α1 . . . αm = κ. For the expansion of S, we apply the
substitution σ = { α1 ÞÑ κ1, . . . , αm ÞÑ κm }.

3.4.2 Recursive Functions

If we tried to apply the translation rule for non-recursive function declarations to the declaration of a
recursive function like append (as defined in the listing below), Coq would complain that there is no
such function when it encounters the recursive call to append.

append :: [a] -> [a] -> [a]

append xs ys = case xs of

[] -> ys

x : xs' -> x : append xs' ys

The reason for this error is that Definition sentences are not allowed to reference themselves in Coq.
If they were allowed to do so, it would be possible to define a non-terminating function. The following
is allowed in Haskell for example.

loop :: a

loop = loop

Similar to undefined, loop is a polymorphic value. In much the same way as shown for undefined

in Section 3.3.5, loop could therefore be used to prove arbitrary propositions when translated to
Coq. Nevertheless, recursion is an important aspect of functional programming languages and most
recursive functions also terminate eventually. In order to still allow recursion, Coq needs to ensure
that recursive functions terminate on all inputs. To indicate that this check needs to be performed by
Coq, the user has to explicitly annotate a recursive function as such. Instead of a Definition sentence,
a Fixpoint sentence is used in this case. The following non-lifted implementation of append would be
accepted by Coq for example.

Fixpoint append {a : Type} (xs : list a) (ys : list a) : list a

:= match xs with

| nil => ys

| cons x xs' => cons x (append xs' ys)

end.

To check that functions like append actually terminate, Coq carries out a syntactic analysis of the
Fixpoint sentence. Namely, Coq must be able to recognize that the function decreases on one of its

41



3. Translation Rules

arguments. We say that a Fixpoint sentence Fixpoint f (x1 : τ1) . . . (x1 : τ1) : τ := e. decreases
on xi if the i-th argument of every recursive call to f in e is structurally smaller than the original
argument xi (The Coq Development Team, 2018, p. 111). One source of structurally smaller terms
is pattern matching. If pattern matching is performed on the decreasing argument or a structurally
smaller term, the variables in the patterns are structurally smaller than the decreasing argument
themselves. In the example above, append is decreasing on its first explicit argument, namely xs. It is
decreasing on this argument because in the only recursive call append xs' ys the first argument, i.e.,
xs', is bound to a subterm of xs by the means of pattern matching.

Although Coq’s termination checker uses an even more sophisticated ruleset to determine whether a
term is structurally smaller than another, it rejects the lifted version of append that the translation rule
in Figure 3.19 would produce if we simply swapped Definition for Fixpoint.

Fixpoint append (Shape : Type) (Pos : Shape -> Type) {a : Type}

(xs : [a]:) (ys : [a]:) : [a]:

:= xs >>= (fun xs_0 =>

match xs_0 with

| nil => ys

| cons x xs' => Cons Shape Pos x (append xs' ys)

end).

The definition is rejected because this time xs' is not a direct subterm of xs but of xs_0. That the >>=

operator is implemented in such a way that xs_0 is always bound to a subterm of xs is not checked
by Coq. There is no particular theoretical justification for this limitation of the heuristic employed by
Coq’s termination checker (Chlipala, 2013, p. 62). As the halting problem is undecidable, it is natural
that there are always situations like this, where the termination checker cannot guess the decreasing
argument. In this concrete situation, the problem results from the usage of a nested inductive type. Let’s
first recall the definition of the monadically lifted List type from Section 3.2.3.

Inductive List (Shape : Type) (Pos : Shape -> Type) (a : Type) : Type

:= nil : List Shape Pos a

| cons : Free Shape Pos a -> Free Shape Pos (List Shape Pos a) -> List Shape Pos a.

The List type is called a nested inductive type because in the second argument of the cons constructor
the type List Shape Pos a occurs nested inside the type constructor Free Shape Pos (Dylus et al.,
2018, p. 29).

As described by Dylus et al. (2018), we can work around the restriction of Coq’s termination checker
concerning nested inductive types by transform the recursive function such that it resembles the
nested structure of the decreasing argument’s data type. For this purpose, the original function is
splitted into a recursive helper function and a non-recursive main function. The helper function,
must be defined such that its decreasing argument is not lifted to the free monad. In case of append,
the fact that the helper function append' expects a non-monadic argument means that append' cannot
be invoked before the bind operation has been performed. Therefore, the main function for append

looks as follows if we insert the call to the helper function as soon as possible.

Definition append (Shape : Type) (Pos : Shape -> Type) {a : Type}
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(xs : [a]:) (ys : [a]:) : [a]:

:= xs >>= (fun xs_0 => append' xs_0 ys).

The body of the helper function now has to contain the match term that we replaced by the call to
append' above.

match xs_0 with

| nil => ys

| cons x xs' => Cons Shape Pos x (append xs' ys)

end

However, because append' must be defined before append, append' cannot reference append. We can
solve this problem by inlining the definition of append into append'.

Fixpoint append' (Shape : Type) (Pos : Shape -> Type) {a : Type}

(xs : [a]˚) (ys : [a]:) : [a]:

:= match xs_0 with

| nil => ys

| cons x xs' => Cons Shape Pos x (xs' >>= (fun xs'_0 => append' xs'_0 ys))

end.

This pair of definitions is now accepted by Coq’s termination checker. Most importantly, though, the
transformation also does not change the behaviour of append. Intuitively, the transformed function
behaves in the same way because we perform a bind only when the original definition would also
have performed a bind. However, proving the correctness of this transformation is beyond the scope
of this thesis.

Next, we want to generalize the approach outlined above. Since function declaration can be mutually
recursive, we have to consider entire strongly connected components of the dependency graph again.
In summary, the following steps need to be performed for the translation.

1. Determine the decreasing argument of all function declarations in the strongly connected compo-
nent.

2. Split the functions into helper and main functions.

3. Inline the definition of the main functions into the helper functions.

4. Translate all helper functions to a single joined Fixpoint sentence and the main functions into
individual Definition sentences.

For the remainder of this section, we are going to sort out the details of those steps. Of particular
interest are the first two steps.
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Determining Decreasing Arguments We have seen a simplified description of the algorithm used
by Coq to test whether a function is decreasing on a specific argument earlier. We are going to use
the same simplified version of that algorithm. Of course, that means that we can only translate a
subset of all recursive functions that Coq would be able to accept. However, reimplementing the
entire termination checker of Coq is beyond the scope of this thesis.

To determine the decreasing argument of a function declaration, we have to test for every argument
of the function declaration whether the function is decreasing on this argument. This test cannot be
performed independently for each function declaration, because the choice of a decreasing argument
influences which arguments of another function are decreasing. Consider two mutually recursive
binary functions foo and bar, where foo’s implementation looks something like this.

foo x y = case x of

C x' -> case y of

C y' -> bar x' y'

If bar is decreasing on its first argument, then foo is also decreasing on its first argument. Conversely,
if bar does not decrease on its first argument, then x is also an invalid choice for the decreasing argu-
ment of foo. Therefore, we have to consider every possible combination of decreasing arguments and
test whether all functions in the strongly connected component actually decrease on those arguments.

Splitting into Helper and Main Functions Unlike in the example of append, we are going to perform
the transformation of the original function into a helper and main function before the conversion to
Coq. Another way in which the general case differs from the example is that the generation of a
single helper function may not suffice. The need for additional helper functions is a consequence of
the restriction that the call to a helper function cannot be inserted before the decreasing argument has
been bound for the first time. A bind operator is inserted when translating case or if expressions or
when invoking a function. As the decreasing argument must be inductively defined, the decreasing
argument cannot be a function and will therefore never be invoked. Even though it would be possible
for the decreasing argument to be bound by an if expression, decreasing on a boolean value is
not plausible in the first place. Therefore, the only way for a decreasing argument to be bound is
when pattern matching is performed on the decreasing argument. As there can be multiple such
case expressions, one helper function must be generated for each of them. For example, two helper
functions must be generated for the following function: one for the case expression in the then branch
and one for the other in the else branch.

f :: τ1 -> τ2
f x = if ...
then case x of ...
else case x of ...

⇝ f , f1, f2 :: τ1 -> τ2
f x = if ... then f0 x else f1 x

f0 x = case x of ...
f1 x = case x of ...

If the if expression would have been a case expression itself, the generation of the helper functions
would further be complicated by the fact that the inner case expressions could reference variable
patterns from the outer case expression. The same is true when the case expression is wrapped by
a lambda abstraction. For this reason, additional arguments may have to be added to the generated
helper functions.
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f x = case ... of

C1 y -> case x of ...
C2 y z -> case x of ...

⇝ f x = case ... of

C1 y -> f1 x y

C2 y z -> f2 x y z

f1 x y = case x of ...
f2 x y z = case x of ...

Furthermore, we neither know the return type of the generated helper functions nor the types of the
additional arguments. For example, consider a function g :: κ -> τ. If a call to g wraps the case

expression, the corresponding helper function must produce a value of type κ. However, due to a
lack of type inference we do not know κ.

f :: τ1 -> τ
f x = g (case x of ...)

⇝ f :: τ1 -> τ
f x = g ( f1 x)

f1 :: τ1 -> κ
f1 x = case x of ...

As suggested by the examples above, formalizing the process of splitting recursive functions is more
technical compared to all translation rules we have seen so far. The splitting procedure involves the
following steps.

1. Consider a n-ary recursive function declaration f that decreases on its i-th argument.

f :: τ1 -> . . . -> τn -> τ
f x1 . . . xn = e

If necessary, expand type synonyms in the type signature of f as shown in Figure 3.20.

2. Find a position p P Pos(e) of a case expression for the decreasing argument.

e|p = case xi of altsp

The selected case expression must not be nested inside another case expression for the decreasing
argument.

@q ă p : e|q ‰ case xi of altsq

3. Determine the additional parameters y1, . . . , ym that need to be added to the corresponding helper
function. A variable must be added as an additional parameter if it is bound by a surrounding
case expression or lambda abstraction and occurs freely in e|p.

4. Generate a helper function fp and replace the case expression in the original function by a call to
the helper function.

f :: τ1 -> . . . -> τn -> τ
f x1 . . . xn = e

⇝ f :: τ1 -> . . . -> τn -> τ
f x1 . . . xn = e[ fp x1 . . . xn y1 . . . ym]p
fp :: τ1 -> . . . -> τn -> κ1 -> . . . -> κm -> κ
fp x1 . . . xn y1 . . . ym = e|p

Where κ1, . . . , κm denote the unknown types of the additional parameters y1, . . . , ym, respectively,
and κ denotes the unknown return type of the generated helper function.
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5. If there are more case expressions for the decreasing argument, go to step 2. Otherwise, we are
done.

After all function declarations in the strongly connected component have been splitted into helper
and main functions, the definitions of the main functions need to be inlined into the helper functions.
It does not suffice to inline the main function into the helper functions that were generated from the
same original function only.

Conversion to Coq In the last step, the generated main and helper functions need to be converted
to Coq. Since the main functions are not recursive anymore, they can be translated to Definition

sentences as shown in Figure 3.19. The order of the main functions does not matter, as all calls
to other functions in the strongly connected component must be subterms of the case expressions
captured by the helper functions.

The helper functions on the other hand remain mutually recursive. Thus, they need to be translated
into a single Fixpoint sentence. Figure 3.21 shows the translation of a single helper function to a
Fixpoint sentence. If there are multiple helper functions, the individual Fixpoint sentences can be
concatenated using the with keyword just as with Inductive sentences. To make sure that Coq does
not guess a different decreasing argument, we explicitly mark the decreasing argument with a {struct

x} annotation.

(
h :: τ1 -> . . . -> τn -> κ1 -> . . . -> κp -> κ
h x1 . . . xn y1 . . . yp = case xi of alts

):

=

Fixpoint h1 (Shape : Type) (Pos : Shape -> Type) {α1
1 . . . α1

m : Type}

(x1
1 : τ1

:) . . . (x1
i : τi

˚) . . . (x1
n : τn

:)

y1
1 . . . y1

p {struct x1
i} := (case xi of alts):

.

Figure 3.21. Translation rule for a single helper function h that is decreasing on its i-th argument. y1, . . . , yp are
the additional parameters of unknown type κ1, . . . , κp. The return type κ of the helper function is also not known
and must be inferred by Coq. The decreasing argument xi is not lifted into the free monad.

3.4.3 Partial Functions

The translation of error terms show in Figure 3.16 required an instance of the Partial type class for
Shape and Pos to be available in the current context. In Haskell it would suffice to have a instance

declaration in the current module or import a module that contains such a declaration.

instance Partial (Maybe a) where

undefined = Nothing

error _msg = Nothing

When undefined is used in a place where a value of type Maybe a is expected, Haskell would automat-
ically use the implementation of undefined from the type class instance above. In Coq, however, type
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class instances must be passed as arguments to functions, similar to how type arguments are passed
to functions as well. Thus, if a function contains an error term, i.e., invokes undefined or error, then
the function must have an additional argument for the Partial type class instance. For example, head
needs a Partial instance when converted to Coq. Therefore, we add another explicit parameter after
Shape and Pos.

head :: [a] -> a

head xs = case xs of

[] -> undefined

x : xs' -> x


:

=

Definition head (Shape : Type) (Pos : Shape -> Type)

(P : Partial Shape Pos) {a : Type}

(xs : [a]:) : [a]: := (* ... *).

In consequence, every function that uses head also needs a Partial instance in order to invoke head.
If we consider error and undefined to be normal functions, we can use the dependency graph to
determine which functions need to be equipped with a Partial instance: if there is a directed path
from a function to the nodes of the dependency graph that correspond to error or undefined, a
parameter for the Partial instances must be added. In case of recursive functions, the main and
helper functions need a Partial instance if and only if the original function needs a Partial instance.
Hereinafter, we will refer to functions that take a Partial instance as a parameter as partial functions.

The only change to the existing translation rules in Figure 3.19 Figure 3.21 is that the parameter
(P : Partial Shape Pos) is added after Shape and Pos if the declared function is partial. Addition-
ally, we have to revise the translation rule for the application of defined functions from Figure 3.9.
If the function is partial, the type class instance P must be passed after Shape and Pos as shown in
Figure 3.22.

( f e1 . . . en)
: = f 1 Shape Pos P e1

: . . . en
:

Figure 3.22. Translation rule for the full application of a n-ary partial function f .

Lastly, note that higher-order functions are not required to be partial, even though a function that is
passed to them could be partial. For example, map does not require a Partial instance. The only func-
tion invoked by map – except for constructors and itself – is the function passed as its first argument.

map :: (a -> b) -> [a] -> [b]

map f xs = case xs of

[] -> []

x : xs' -> f x : map f xs'

If we try to plug a partial function like head into map, head is equipped with the Partial instance at
call-time already.

(map head xss): = map (fun xs => head Shape Pos P xs) xss

Therefore, there is no need for map to know about the Partial instance.
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3.5 QuickCheck Properties

In this last section, an extension to the translation rules for function declarations is presented that
allows templates for Coq theorems to be generated from QuickCheck properties.

3.5.1 Motivation

The goal of the translation to Coq is to prove properties of the original Haskell programs. Before
such a property can be proven using Coq, the user has to formulate a suitable proposition first. Due
to the overhead involved with our translation, writing down such propositions in Coq directly is a
tedious task. However, since we want to state proposition about Haskell code, it is natural to note
them down in Haskell. QuickCheck provides us with a mechanism for writing properties that we
expect our program to fulfill.

The QuickCheck library is usually used during development of Haskell programs to create automated
tests. The programmer writes a regular function – a so called QuickCheck property – that returns
a boolean value for example. By convention the names of such QuickCheck properties start with
the prefix prop_. We can think about them as universally quantified propositions. For example, the
following QuickCheck property states, that all integers n and m commute under addition.

prop_add_comm :: Integer -> Integer -> Bool

prop_add_comm n m = n + m == m + n

QuickCheck generates arbitrary values for the function’s arguments and passes them to the function.
If the function returns True, the property is satisfied and QuickCheck generates further examples to
test the function with. Otherwise, QuickCheck terminates printing the counter example it found for
the property.

Thus, QuickCheck does not only provide a notation for properties that we want to prove in Coq but
also offers the user a way to convince themselves that the program probably fulfills the property
before they attempt the proof.

3.5.2 Assumptions

The extension proposed in this section is optional. To enable the translation of QuickCheck properties,
the Haskell module must contain the following import declaration.

import Test.QuickCheck

This import declaration imports only a selected subset of QuickCheck’s functionalities. Namely, the
following operators are supported:

Ź (==>) :: Testable prop => Bool -> prop -> Property,
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Ź (.&&.), (.||.) :: (Testable prop1, Testable prop2) => prop1 -> prop2 -> Property and

Ź (===), (=/=) :: a -> a -> Property.

The operations above are available only inside QuickCheck properties, i.e., functions whose name
starts with prop_. The semantics of the operations is explained in the next subsection.

The type Property is used by QuickCheck to represent more complex properties than Bool can rep-
resent. In user-defined functions, it is only allowed to be used as the return type of QuickCheck
properties. The type class Testable is used in the type signatures above to indicate that the corre-
sponding arguments can either be of type Bool or Property. The (===) and (=/=) operations usually
require an instance of the type Eq type class. Since users cannot implement Eq instances in our com-
piler, we allow these two operators to be used with any type and use structural equality for the actual
comparison.

A QuickCheck property p has the following form where τ is one of Bool or Property.

prop_p :: τ1 -> . . . -> τn -> τ
prop_p x1 . . . xn = e

3.5.3 Code Generation

QuickCheck properties are translated to Theorem sentences as shown in Figure 3.23. The arguments
of the QuickCheck property – including type variables used in it’s type signature as well as the
parameters Shape, Pos and potentially P – must be quantified universally. For the translation of the
right-hand sides of QuickCheck properties, we introduce a new translation operation denoted by ;.
The corresponding proof is left blank and must be filled in by the user.

(
prop_p :: τ1 -> . . . -> τn -> τ
prop_p x1 . . . xn = e

):

=

Theorem prop_p1:

forall (Shape : Type) (Pos : Shape -> Type)

{α1
1 . . . α1

m : Type} (x1
1 : τ1

:) . . . (x1
n : τn

:), e;.

Proof. (* FILL IN HERE *) Admitted.

Figure 3.23. Translation rule for QuickCheck properties. If the function prop_p is partial, an additional binding
(P : Partial Shape Pos) must be added.

In the simplest case, the right-hand side of the property is an expression of type Bool. Such a property
holds if the boolean expressions evaluates to True.

e; = e: = True: if e :: Bool

Since we do not support type classes, (==) and (/=) can only be used for the comparison of inte-
gers. This complicates writing properties that involve equality of other data types. For example, the
following is invalid.
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prop_append_assoc :: [a] -> [a] -> [a] -> Bool

prop_append_assoc xs ys zs = (xs `append` ys) `append` zs == xs `append` (ys `append` zs)

For this reason, we translate QuickCheck’s (===) and (=/=) operators to Coq’s built-in structural
equality.

(e1 === e2)
; = e1

: = e2
:

(e1 =/= e2)
; = e1

: <> e2
:

Furthermore, the precondition operator (==>) is translated to an implication in Coq.

(e1 ==> e2)
; = e1

; -> e2
;

The operators (===), (=/=) and (==>) produce values of type Property and correspond to Coq propo-
sitions formed by =, <> and ->. Therefore, we cannot use (&&) or (||) to combine such values. In Coq
/\ and \/ can be used to denote the conjunction and disjunction of propositions, respectively. We are
using QuickChecks (.&&.) and (.||.) operators for this purpose.

(e1 .&&. e2)
; = e1

; /\ e2
;

(e1 .||. e2)
; = e1

; \/ e2
;
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Chapter 4

Implementation

In this chapter the actual implementation of the Haskell to Coq compiler is presented. The imple-
mentation is based on the compiler developed by Jessen (2019) but most components have been
completely rewritten by now. The first section gives an overview of the general architecture of the
compiler. Technologies that have been used for the implementation of the compiler and the phases
of the compilation process are summarized. In sections two through six, the individual phases of the
compilation process are described in more detail. The last two sections address our approach to error
handling and how we realize predefined data types and operations.

4.1 Architecture

The Haskell to Coq compiler presented in this thesis is written in Haskell itself. To manage depen-
dencies and to build the compiler, we are using Cabal1. Instructions for how to setup, build and run
the compiler can be found in Appendix A.

The compilation process for the translation of a Haskell module to Coq is outlined in Figure 4.1.
First, Haskell files are parsed into a data structure known as an abstract syntax tree ("AST"). In the
second stage, the AST is converted to an intermediate representation that simplifies the analysis and
conversion of the Haskell program in the subsequent stages. The converter transforms the simplified
Haskell AST to a Coq AST that is printed to the console or output file in the final stage of the
compilation process.

Using Haskell for the implementation of our compiler allows us to make use of Haskell’s package
infrastructure. Especially, the Haskell and Coq parsers, ASTs and pretty printers have not been im-
plemented by ourselves. In the following sections more details will be given regarding the individual
stages and used libraries.

4.2 Haskell Parser

In the first stage of the compilation process, the input file is parsed into an AST. We have not imple-
mented our own Haskell parser for this purpose but are using the haskell-src-exts package2 instead.

1https://www.haskell.org/cabal/
2http://hackage.haskell.org/package/haskell-src-exts
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Haskell Source File

Parser

Simplifier

 Haskell AST

Dependency Analysis

 Simplified AST

Partiality Analysis

Type Conversion

Pretty Printer

Coq Source File

Function Conversion

 Coq AST

Figure 4.1. Stages of the compilation process from Haskell to Coq. Arrows are labeled with the intermediate
representation of the data passed between two stages.
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haskell-src-exts provides a Haskell parser, AST and pretty printer for Haskell and supports a vari-
ety of language extensions in addition to standard Haskell. On the one hand, the advantage of using
the haskell-src-exts is that it allows us to easily add support for further language features in the
future. On the other hand, haskell-src-exts extensive language support makes it difficult to work
directly on its AST.

For example, if we used this data structure to implement the translation of type expressions directly,
we would have to consider 19 different constructors of the type that represents type expressions
in haskell-src-exts. Many of those constructors represent either kinds of type expressions that are
part of some language extension or not supported by our compiler yet. Therefore, we would have to
ignore a lot of constructors in the implementation of the translation rules. Handling only a subset
of the constructors of complex data structures comes at the risk of accidentally missing a case that
would have been relevant. Besides the large number of constructors, the hierarchical structure of the
AST makes it difficult to reason about source code that uses the AST. In consequence, we do not work
directly on the AST from haskell-src-exts but use a custom data structure described in the next
subsection.

4.3 AST Simplification

In order to make the code that is concerned with the translation to Coq more maintainable and
readable, we defined our own simplified data structure for the representation of Haskell modules.
This simplified AST is tailored to our assumptions in Section 2.4 and models only parts of Haskell,
that we actually support.

The Haskell AST generated by haskell-src-exts is converted by a component that we call a simplifier
to our simplified intermediate representation. The simplifier also checks whether only supported
features are used by the input module and rewrites syntactic sugar like infix applications in terms of
more basic operations.

The simplified AST is used instead of the haskell-src-exts AST throughout the compiler to analyse
the Haskell program and convert it to Coq. Due to the simplicity of the data structure, all pattern
matching performed on the simplified AST can be exhaustive. If we extend the supported subset of
Haskell in the future, the exhaustive nature of the pattern matching will help to find parts of the code
that need to be adapted.

4.4 Dependency Analysis

Since the order of declarations matters in Coq, we have to group and sort type and function decla-
rations according to their dependencies. As has been described in Chapter 3 already, a dependency
graph has to be created for this purpose. Declarations whose nodes are in the same strongly con-
nected connected component of the dependency graph, must be converted at the same time and the
strongly connected components have to be converted in reverse topological order. Fortunately, there
are libraries in Haskell to work with graphs, so we do not have to implement any of those algorithms
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on our own. Specifically, we are using the Data.Graph3 module from the containers package to handle
dependency graphs.

Using the stronglyConnComp function from Data.Graph one can directly obtain a list of strongly con-
nected components in reverse topological order. To use stronglyConnComp we have to represent depen-
dency graphs as a list of triples where each triple represents a node of the dependency graph and
has the following components:

Ź the AST node that corresponds the respective node of the dependency graph,

Ź the name of the of the type or function declaration and

Ź a list of names for types and functions used by the declaration.

Thus, the only part of the dependency analysis that we have to implement ourselves is the extraction
of used types and functions of the declarations. For simplicity, we consider type and function declara-
tions independently, i.e., we are creating two separate dependency graphs one for type declarations
and one for functions. We can ignore dependencies between functions and types as all converted type
declarations are placed in front of all function declarations later anyway.

For example, the extraction of a type declaration’s dependencies is governed by the following rules.
In the listing below, δ denotes a function that computes the set of used identifiers for a given Haskell
language construct.

δ(type S α1 . . . αn = τ) = δ(τ)z{ α1, . . . , αn }

δ(τ1 Ñ τ2) = δ(τ1) Y δ(τ2)

δ(τ1 τ2) = δ(τ1) Y δ(τ2)

δ(T) = { T }
δ(α) = { α }

Similar rules are implemented for data type declarations, function declarations and expressions as
well.

4.5 Partiality Analysis

In addition to sorting function declarations during the dependency analysis, the function dependency
graph can also be used to identify partial functions. As discussed in Section 3.4.3, partial functions
can be identified by adding two additional nodes to the dependency graph for undefined and error.
However, we cannot simply add an entry for undefined and error to the list of triples from the
previous section since there is no AST node for them that could go into the first components.

Therefore, we first have to look through the list of triples for the names of functions that refer to the
identifiers error or undefined, i.e., identify directly partial functions. We can use Data.Graph to find

3http://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Graph.html
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the names of all indirectly partial functions, i.e., all nodes from which a path to a directly partial
function exists within the dependency graph.

4.6 Conversion to Coq

For the conversion to Coq, we need a representation of Coq programs in Haskell. Just like we used an
external package for parsing Haskell source code, we are also reusing an existing Coq AST and pretty
printer. The pretty printer is a component for converting the Coq AST to a textual representation.
Unlike haskell-src-exts, there is currently no Coq package on Hackage. However, the developers
of hs-to-coq implemented a Coq AST and pretty printer already. Thus, we forked their GitHub
repository4 and deleted everything but the Coq language definitions. We refer to the remaining code
in the forked repository5 as the language-coq package. Since hs-to-coq is released under the MIT
license agreement, it is possible to publish the package to Hackage in the future.

With our simplified AST and the language-coq package at hand, we can now implement the trans-
lation rules from Chapter 3 very easily. The following two subsections provide details on how our
compiler handles state and renames identifiers in the conversion process.

4.6.1 Environment

During the conversion to Coq, we have to retain a lot of information about the program that we are
translating. Amongst others, we have to remember:

Ź the names we have assigned to the generated Coq sentences, such that we can translate references
to them correctly,

Ź the arity of defined functions, such that we can perform the right number of η-conversions to
partial applications,

Ź which functions are partial, such that we can pass the Partial instance to them and

Ź which variables have been lifted to the Free monad and which haven’t.

Since it would be infeasible, to pass all this information as individual parameters, we encapsulate
the entire state of the compiler in a single data type Environment. Additionally, some conversion
operations have an effect on the compiler’s environment. For example, when translating a function
declaration, the function becomes available to subsequently translated function declarations, i.e., an
entry must be added to the environment for the declared function. Therefore, every function of the
compiler would not only have to be given a parameter of type Environemnt but can also return an
Environment in addition to the actual result. In consequence, the approach of passing the environment
explicitly still causes a lot of overhead. We have solved this issue by using the State monad. The State

monad allows a state – in our case, the Environment – to be passed around and manipulated implicitly
throughout the computation.

4https://github.com/antalsz/hs-to-coq
5https://github.com/just95/language-coq
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4.6.2 Renaming Identifiers

As mentioned in Section 2.3.3, identifiers may have to be renamed during the translation to Coq. For
example, the Coq Reference Manual lists the following reserved keywords which cannot be used as
identifiers in Coq (The Coq Development Team, 2018, p. 24).

_ as at cofix else end exists exists2 fix for

forall fun if IF in let match mod Prop return

Set then Type using where with

Furthermore, words used within vernacular commands, should not be used as identifiers. For exam-
ple, it is not possible to define a datatype called Definition in Coq, i.e., the following is invalid.

Inductive Definition : Type := (* ... *).

(* ==> Syntax error: [inductive_definition] expected

after [finite_token] (in [vernac:gallina]). *)

Therefore, we have assembled a list of all Coq keywords and words used within vernacular commands
(The Coq Development Team, 2018, pp. 484-487). Whenever there is a declaration whose name occurs
within that list, it must be renamed as described below.

Another reason for an identifier to have to be renamed, is that there is a declaration with the same
name already. Such name conflicts can occur because – unlike Coq – Haskell has two distinct names-
paces for types and values. The following is valid in Haskell but when converted to Coq we have to
rename either the type or constructor for example.

data Foo = Foo

Therefore, we remember the names of all defined types, functions and variables in our environment.
If an identifier is translated and occurs already in the environment, it has to be renamed. Additionally,
we have to remember the namespace where the identifier has been defined. It is an error if there are
two declarations in the same namespace with the same name. For example, it is not allowed to have
two type variables with the same name.

data Foo a a = Foo

Since we want to preserve the original identifier as good as possible, identifiers are renamed by
appending a number. The number starts with zero and is increased until the resulting identifier is
available. If the original identifier ends with a number, counting continues at that number. Consider
for example the following data type declaration.

data Definition exists2 = Definition exists2

The identifiers that occur within this declaration need to be translated as follows.
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Ź The name of the type constructor is encountered first. As Definition is a vernacular command, it
has to be renamed to Definition0.

Ź The type variable exists2 is a keyword and needs to be renamed as well. Since it ends with a
number, it is renamed to exists3 instead of exists20.

Ź The constructor Definition again needs to be renamed as it is a vernacular command. However,
this time the identifier Definition0 is taken already. Therefore, the next available identifier is
Definition1. The capitalized version of the constructor name is used for the smart constructor. The
actual constructor of the data type starts with a lower case letter. In case of Definition, the data
constructor is called definition in Coq and does not have to be renamed.

Ź In the constructor argument, exists2 is not a declaration but a reference. The compiler looks up
the corresponding Coq identifier for exists2 in the environment. The environment contains an
entry that maps the Haskell identifier exists2 in the type namespace to the Coq identifier exists3.
Therefore, the type variable is translated to exists3.

The code generated by our compiler looks as follows.

(* Data type declarations for Definition *)

Inductive Definition0 (Shape : Type) (Pos : Shape -> Type)

(exists3 : Type) : Type

:= definition : Free Shape Pos exists3 -> Definition0 Shape Pos exists3.

(* Arguments sentences for Definition *)

Arguments definition {Shape} {Pos} {exists3}.

(* Smart constructors for Definition *)

Definition Definition1 (Shape : Type) (Pos : Shape -> Type)

{exists3 : Type} (x_0 : Free Shape Pos exists3)

: Free Shape Pos (Definition0 Shape Pos exists3) :=

pure (definition x_0).

The identifier x_0 in the smart constructor declaration is freshly generated by the compiler. Internally
fresh identifier consist of a prefix (x in the example above), an @ sign and an increasing number. As
the @ signs are not allowed inside Haskell identifiers, fresh identifiers are guaranteed to never conflict
with any user-defined identifiers. For the purpose of generating fresh identifiers, the environment
contains an independent counter for each prefix. Since the @ sign is not allowed within Coq identifiers
either, it is replaced by an underscore before renaming the identifier.

4.7 Error Reporting

Errors can occur in all stages of the compilation process. For example, there could be:

Ź an IO error while loading the input file,
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Ź a syntax error when parsing the input file’s content,

Ź an error due to the usage of unsupported Haskell features during the simplification of the AST or

Ź an error due to the usage of an undefined identifier during the conversion to Coq.

One way to report errors in Haskell is by using the error function which prints an error message
and terminates the program immediately. However, we do not want our compiler to crash but rather
print the error message in a user-friendly manner and terminate gracefully. Furthermore, there are
non-fatal kinds of messages, i.e., hints and warnings, that we would like to report to the user. For
example, the user should be informed when an identifier is renamed during the conversion to Coq.

Therefore, we model the entire compilation process as a monadic computation based on the Maybe

and Writer monads. Our monad collects reported messages during the computation and cancels the
computation if a fatal error occurs. When the computation returns to the compiler’s main loop, the
collected error messages are printed to the console via the IO monad. We are printing messages in a
format based on the GHC’s message format. For example, the following program

1 module Test where

2

3 head :: [a] -> a

4 head (x : xs) = x

causes the following error message to be reported.

Test.hs:4:6: error:

Expected variable pattern.

|

4 | head (x : xs) = x

| ^^^^^^^^

4.8 Base Library

The code generated by the translation rules presented in Chapter 3 relies on a definition of the free
monad to be available in Coq. Furthermore, implementations of predefined data types and operations
as described in Section 2.4.7 must be provided. For this reason, our compiler is accompanied by a
Coq library called Base. The compiler adds a command to the top of every generated Coq file that
imports the Free and Prelude modules of the base library.

From Base Require Import Free Prelude.

While the Prelude module contains predefined data types and operations, the Free module exports
definitions of the free monad, bind operator and Partial type class. Concrete instances for Identity,
Maybe and Error are included in the Base library as well but not exported by default.
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Similar to how user-defined data types sometimes need to be renamed, the symbols used for prede-
fined data types and operations must be given a valid Coq identifier. For example, the nullary tuple
is called Unit in the base library while it is simply denoted () in Haskell. To reduce the coupling
between the compiler and the base library, these names are not hard-coded into the compiler but
configurable. For this purpose, there is a env.toml configuration file in the root directory of the base li-
brary whose format is documented in Appendix B. The separation of the base library from the actual
compiler makes it easy to extend the Prelude in the future.

One consequence of the separation is, that the user has to explicitly specify the location of the base
library using the --base-libray command line option (see also Appendix A) if it cannot be found in
the directory where Cabal usually places data files. The compiler automatically creates a _CoqProject

file in the output directory if it does not exists. The _CoqProject tells Coq where the Base library can be
found.
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Chapter 5

Case Study

In this chapter we want to evaluate whether the Coq code generated by our compiler is actually
useful to prove properties about the original Haskell program. For our evaluation, we are using an
example that has been used in the articles by Abel et al. (2005) and Dylus et al. (2018) before. The
goal is to prove the correctness of an optimized queue implementation based on two lists by relating
it to a more straightforward implementation of a queue with a single list.

type Queue a = [a]

empty :: Queue a

empty = []

isEmpty :: Queue a -> Bool

isEmpty q = null q

front :: Queue a -> a

front (x:q) = x

add :: a -> Queue a -> Queue a

add x q = q ++ [x]

type QueueI a = ([a], [a])

emptyI :: QueueI a

emptyI = ([], [])

isEmptyI :: QueueI a -> Bool

isEmptyI (f, b) = null f

frontI :: QueueI a -> a

frontI (x : f, b) = x

addI :: a -> QueueI a -> QueueI a

addI x (f, b) = flipQ (f, x : b)

flipQ :: QueueI a -> QueueI a

flipQ ([], b) = (reverse b, [])

flipQ q = q

Figure 5.1. The two queue implementations. The implementation on the left uses a single list and the implemen-
tation on the right uses two lists.

The two implementations as shown in Figure 5.1 cannot be feed directly into our compiler since they
do not comply with our assumptions (see Section 2.4). First, pattern matching on the left-hand side of
the function declarations needs to be converted to explicit pattern matching using case expressions as
shown in Figure 5.2. Furthermore, we have to provide implementations for null, (++) and reverse as
they are not yet part of the Prelude provided by our compiler. Since we do not permit the declaration
of custom operators, we have to rename (++) to append. Figure 5.3 shows the declarations of these
auxiliary functions. The definitions in Figure 5.2 and Figure 5.3 can now be converted to Coq and are
also accepted by Coq.
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type Queue a = [a]

empty :: Queue a

empty = []

isEmpty :: Queue a -> Bool

isEmpty q = null q

front :: Queue a -> a

front q = case q of

x : q' -> x

[] -> undefined

add :: a -> Queue a -> Queue a

add x q = q `append` [x]

type QueueI a = ([a], [a])

emptyI :: QueueI a

emptyI = ([], [])

isEmptyI :: QueueI a -> Bool

isEmptyI q = case q of

(f, b) -> null f

frontI :: QueueI a -> a

frontI q = case q of

(f, b) -> case f of

x : f' -> x

[] -> undefined

addI :: a -> QueueI a -> QueueI a

addI x a0 = case a0 of

(f, b) -> flipQ (f, x : b)

flipQ :: QueueI a -> QueueI a

flipQ q = case q of

(f, b) -> case f of

[] -> (reverse b, [])

x : f' -> (x : f', b)

Figure 5.2. The two queue implementations after transforming pattern matching.

null :: [a] -> Bool

null xs = case xs of

[] -> True

x : xs -> False

append :: [a] -> [a] -> [a]

append xs ys = case xs of

[] -> ys

x : xs' -> x : (append xs' ys)

reverse :: [a] -> [a]

reverse xs = case xs of

[] -> []

x : xs' -> reverse xs' `append` [x]

Figure 5.3. Functions required by the queue example but that are not yet defined in our Prelude.
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The first property that we want to prove is that all queues constructible using the functions from the
implementation with two lists fulfil the following invariant. Again, we need to define the auxiliary
function not that is usually part of the Prelude.

not :: Bool -> Bool

not b = case b of

True -> False

False -> True

invariant :: QueueI a -> Bool

invariant qi = case qi of (f,b) -> null b || not (null f)

Next, we define two QuickCheck properties: one tests whether the empty queue fulfills the invariant
and the other one tests whether a queue constructed by adding an arbitrary element to a queue which
fulfills the invariant, preserves the invariant.

prop_inv_empty :: Bool

prop_inv_empty = invariant emptyI

prop_inv_add :: a -> QueueI a -> Property

prop_inv_add x q = invariant q ==> invariant (addI x q)

If we add a QuickCheck import to the module, our compiler generates the following Theorem sen-
tences.

Theorem prop_inv_empty : forall (Shape : Type) (Pos : Shape -> Type),

invariant Shape Pos (emptyI Shape Pos) = True_ Shape Pos.

Proof. (* FILL IN HERE *) Admitted.

Theorem prop_inv_add :

forall (Shape : Type) (Pos : Shape -> Type) {a : Type}

(x : Free Shape Pos a) (q : Free Shape Pos (QueueI Shape Pos a)),

(invariant Shape Pos q = True_ Shape Pos) ->

(invariant Shape Pos (addI Shape Pos x q) = True_ Shape Pos).

Proof. (* FILL IN HERE *) Admitted.

While the definition of prop_inv_add is fine, Coq rejects the definition of prop_inv_empty with the
following error message.

Cannot infer the implicit parameter a of invariant whose type is "Type" in environment:

Shape : Type

Pos : Shape -> Type

The problem occurs because both the invariant and emptyI are polymorphic. In case of prop_inv_add,
Coq can infer the type arguments of invariant and add from the types of x and q. However, in case
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of prop_inv_empty the context contains no type information. In fact, we wanted to prove that the
empty queue fulfills the invariant for any value type, but we never quantify the value type in the
theorem above. We can fix this issue by adding a binder for a new type variable and passing this type
variable explicitly to either invariant or emptyI. The @ sign before emptyI tells Coq that we want to
pass implicit arguments explicitly.

Theorem prop_inv_empty : forall (Shape : Type) (Pos : Shape -> Type) (a : Type),

invariant Shape Pos (@emptyI Shape Pos a) = True_ Shape Pos.

Unfortunately, it is not possible to make these changes automatically without performing type in-
ference. Similar problems can occur outside of QuickCheck properties as well. For example, the
following definition of zero would be rejected by Coq if we applied our current translation.

length :: [a] -> Integer

length xs = case xs of

[] -> 0

x : xs' -> 1 + length xs'

zero :: Integer

zero = length []

Apart from the small change shown above, the prove of prop_inv_empty is straightforward since the
left-hand side directly evaluates to True_ Shape Pos. The complete code for this chapter – including
the proof scripts – can be found in the example folder of our compiler1.

When we attempt the prove of prop_inv_add, we find that the property is not true if we consider
partial values. If the first component of the input queue is undefined and the second empty, the
invariant holds for the input due to the lazy evaluation of (||).

invariant (undefined, []) = null [] || not (null undefined)

= True || not (null undefined)

= True

Even though the premise holds, the conclusion of the theorem is false in this example. Since addI calls
flipQ and flipQ performs pattern matching on the first component, the result of addI is undefined

and not True.

invariant (addI x (undefined, [])) = invariant (flipQ (undefined, [x]))

= invariant undefined

= undefined

The problem is the hidden assumption of the QuickCheck property that the values passed to it are
total. Dylus et al. (2018, p. 20) encountered the same problem and proposed to extend the generated
QuickCheck property by the premise that the given queue does not contain partial values. For this
purpose, we have to manually define inductive properties for the data types in our program that check
whether all values are pure. Their definition follows the same pattern as the data type declaration in

1https://git.informatik.uni-kiel.de/stu203400/haskell-to-coq-compiler/tree/master/example
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Coq itself and could be automated in the future. After adding the premise, the theorem looks as
follows.

Theorem prop_inv_add :

forall (Shape : Type) (Pos : Shape -> Type)

{a : Type} (total_a : Free Shape Pos a -> Prop)

(x : Free Shape Pos a) (q : Free Shape Pos (QueueI Shape Pos a)),

total_queue Shape Pos total_a q ->

(invariant Shape Pos q = True_ Shape Pos) ->

(invariant Shape Pos (addI Shape Pos x q) = True_ Shape Pos).

The parameter total_a is an arbitrary notion of totality for elements of type a. total_queue is one of
our inductive propositions and ensures that:

Ź the queue itself is pure,

Ź the two lists of the queue are pure,

Ź all of their sublists are pure and

Ź the values of the queue are total with respect to total_a.

Since total_a is universally quantified, the extended theorem does not require the elements of the
queue themselves to be total. The inductive propositions add a lot of overhead to our Coq file but the
proof of prop_inv_add is still simple.

Now that we have shown that the implementation of queues with two lists satisfies the invariant,
we want to prove that the implementation is compatible with the single list version. To relate both
implementations, we define a function that converts queues from one representation to the other.

toQueue :: QueueI a -> Queue a

toQueue qi = case qi of

(f, b) -> f `append` reverse b

We proceed by defining the following QuickCheck properties. In contrast to Dylus et al. (2018), we
have to use the (===) operator since (==) only works with integers in our implementation. The (===)

operator is translated to Coq’s structural equality by our compiler.

prop_isEmpty :: QueueI a -> Property

prop_isEmpty qi = invariant qi ==> isEmptyI qi === isEmpty (toQueue qi)

prop_add :: a -> QueueI a -> Property

prop_add x qi = toQueue (addI x qi) === add x (toQueue qi)

prop_front :: QueueI a -> Property

prop_front qi = invariant qi && not (isEmptyI qi) ==> frontI qi === front (toQueue qi)
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Due to minor differences in the definition of the Free monad, slight modifications need to be done to
the proofs presented by Dylus et al. (2018). There are further differences in the exact definition of the
inductive propositions like total_queue which we need for prop_front again. Apart from that we can
copy their proofs. Since their proof for prop_add makes use of induction, we also have to copy and
adapt the their induction principles for the free monad (Dylus et al., 2018, pp. 29-31). As proofs by
induction are very common, the induction principles have been added to our base library. Only the
theorem for prop_front requires a Partial instance. The other properties are completely effect-generic.
While Dylus et al. (2018) were only able to prove prop_front for specific monads that model partiality,
our approach with the Partial type class allows us to extend the proof of prop_front to all monads
for which a notion of partiality exists.
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Chapter 6

Conclusion

In this final chapter, we conclude the thesis by summarizing our work and providing an outlook for
future improvements and extensions to the presented compiler.

6.1 Summary and Results

The goal of this thesis was to develop a compiler for the monadic translation for effectful Haskell
programs to Coq. First, we have familiarized ourselves with Coq and presented the approach by
Dylus et al. (2018) for modeling effectful Haskell code in Coq. Next, we formalized the monadic
translation for a subset of Haskell based on the translation from Haskell to Agda by Abel et al.
(2005). The resulting translation rules were implemented in Haskell with the help of third party
libraries. We extended and adapted an existing prototypical implementation by Jessen (2019) for our
implementation.

As demonstrated by our case study in Chapter 5, our compiler generates code which is most often ac-
cepted by Coq without user intervention. Minor modifications are sometimes needed due to the lack
of type inference. The extension for the translation of QuickCheck properties presented in Section 3.5
helps the user to prove properties by generating templates of theorems from Haskell code. Implicit
assumptions of the Haskell code need to be modeled by the user manually in order to prove some
properties. Parts of this process could be automated in the future.

In total, we are confident that the compiler presented in this thesis provides a solid basis for future
research and the verification of effectful Haskell programs. Nevertheless, our implementation is far
from perfect. We present some ideas for future improvements and extensions of our work in the next
section.

6.2 Future Work

The subset of Haskell supported by our compiler is very restrictive at the moment. To eliminate the
limitation on pattern matching, a pattern matching compiler library1 that is currently being developed
by Malte Clement, could be integrated into our compiler in the future. How Haskell features involving
strictness, e.g., newtype declarations and bang patterns, could be modeled in Coq is described by
Christiansen et al. (2019, pp. 132-134). Further language features that we would like to support in the

1https://git.informatik.uni-kiel.de/stu204333/placc-thesis

67

https://git.informatik.uni-kiel.de/stu204333/placc-thesis


6. Conclusion

future include type classes, local declarations and type inference. More predefined data types and
operations from the Prelude should be added as well. Due to the modular design of our Base library,
we expect the extension of the Prelude to be straightforward. The configuration file format developed
for the Base library could be reused for the implementation of import declarations as well.

Furthermore, improvements need to be made to the translation of recursive functions. Even though
the detection of decreasing arguments is very complicated already, its limitations greatly reduce
the user’s flexibility. In addition, the current translation scheme also does not work very well in
conjunction with recursive higher-order functions.

While we have tried to convince ourselves in Chapter 3 that the translation rules are most likely
correct, we have not actually proven their correctness in this thesis. Before definitive conclusions
can be drawn from proofs about translated programs, it remains to be formally verified that our
translation rules model the behaviour of the original program correctly. One aspect of Haskell’s
semantics which we know is not reflected by the generated Coq code is sharing. Effects are triggered
in our implementation through the use of bind operators. If the value is bound twice, the effect
is triggered twice. In Haskell sharing prevents a value from being evaluated twice, therefore every
effect is triggered at most once. In case of partiality, we cannot distinguish between an effect being
triggered once or twice (Christiansen et al., 2019, p. 131). However, we can use the free monad to
model a logging effect as provided by the function trace in Haskell. In contrast to partiality, we can
distinguish an implementation with and without sharing for this effect since the same message may
be logged multiple times in the absence of sharing (Christiansen et al., 2019, p. 131). Therefore, the
compiler must be adapted to model sharing before it is truly effect-generic.
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Appendix A

Installation and Usage

Directory Structure The implementation of the Haskell to Coq compiler presented in this thesis can
be found in our Git repository1. The code is structured as follows.

Ź base: Contains the Coq base library.

Ź Free: Contains Coq files for the definition of the free monad.

Ź Prelude Contains Coq files for predefined data types and operations.

Ź env.toml Configuration file (see Appendix B) that contains the names of predefined data types
and operations.

Ź example: Contains example Haskell and Coq code.

Ź manual: Manually translated Coq files.

Ź generated: Coq files generated by the compiler (not included in distributed source).

Ź ExampleQueue.hs The input module used in the case study.

Ź ExampleQueueTests.v Proofs and lemmas for QuickCheck properties in ExampleQueue.hs.

Ź src Haskell source code.

Ź tool Bash scripts for running and testing the compiler during development.

Required Software The Haskell to Coq compiler is written in Haskell and uses Cabal to manage
its dependencies. To build the compiler, the GHC2 and Cabal3 are required. To use the Coq code
generated by our compiler, the Coq proof assistant4 must be installed. The compiler has been tested
with the following software versions on a Debian based operating system.

Ź GHC, version 8.6.5

Ź Cabal, version 2.4.1.0

Ź Coq, version 8.8.2
1https://git.informatik.uni-kiel.de/stu203400/haskell-to-coq-compiler
2https://www.haskell.org/ghc/
3https://www.haskell.org/cabal/
4https://coq.inria.fr/download
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A. Installation and Usage

Compiling the Base Library In order to use the base library, the Coq files in the base library need
to be compiled first. Make sure to compile the base library before installing the compiler. We provide
a shell script for the compilation of Coq files. To compile the base library with that shell script, run
the following command in the root directory of the compiler.

./tool/compile-coq.sh base

Installation First, make sure that the Cabal package lists are up to date by running the following
command.

cabal new-update

To build and install the compiler and its dependencies, change into the compiler’s root directory and
run the following command.

cabal new-install haskell-to-coq-compiler

The command above copies the base library and the compiler’s executable to Cabal’s installation
directory and creates a symbolic link to the executable in ~/.cabal/bin. To test whether the installation
was successful, make sure that ~/.cabal/bin is in your PATH environment variable and run the following
command.

haskell-to-coq-compiler --help

Running without Installation If you want to run the compiler without installing it on your machine,
execute the following command in the root directory of the compiler instead of the haskell-to-coq-compiler

command.

cabal new-run haskell-to-coq-compiler -- [options...] <input-files...>

The two dashes are needed to separate the arguments to pass to the compiler from Cabal’s arguments.
Alternatively, you can use the ./tool/run.sh bash script.

./tool/run.sh [options...] <input-files...>

Usage To compile a Haskell module, pass the file name of the module to haskell-to-coq-compiler.
For example, to compile the example module from the case study, run the following command.

haskell-to-coq-compiler ./example/ExampleQueue.hs
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The generated Coq code is printed to the console. To write the generated Coq code into a file, specify
the output directory using the --output (or -o) option. For example, the following command creates
a file example/generated/ExampleQueue.v.

haskell-to-coq-compiler -o ./example/generated ./example/ExampleQueue.hs

In addition to the Coq file, a _CoqProject file is created in the output directory if it does not exist already.
The _CoqProject file tells Coq where to find the compiler’s base library. Add the --no-coq-project

command line flag to disable the generation of a _CoqProject file.

In order to compile Haskell modules successfully, the compiler needs to know the names of prede-
fined data types and operations. For this purpose, the base/env.toml configuration file has to be loaded.
If the compiler is installed as described above, it will be able to locate the base library automatically.
Otherwise, it may be necessary to tell the compiler where the base library can be found using the
--base-library (or -b) option.

Use the --help (or -h) option for more details on supported command line options.
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Appendix B

Configuration File Format

As mentioned in Section 4.8, there is a configuration file in the root directory of the base library that
configures the names of predefined data types and operations. The configuration file format is Tom’s
Obvious, Minimal Language ("TOML")1. TOML’s syntax looks similar to INI files but is standardized
in contrast to INI. TOML aims to be more readable and to easier to comprehend that YAML and is
superior to JSON as it allows for the usage of comments – which are an essential part of configuration
files.

The TOML document in the env.toml file must contain three arrays of tables: types, constructors and
functions. Each table in these arrays defines a type, constructor or function, respectively. The expected
contents of each table are described below.

Types The tables in the types array must contain the following key/value pairs:

Ź haskell-name (String) the Haskell name of the type constructor.

Ź coq-name (String) the identifier of the corresponding Coq type constructor.

Ź arity (Integer) the number of type arguments expected by the type constructor.

For example, the following entry defines the pair data type.

[[types]]

haskell-name = "(,)"

coq-name = "Pair"

arity = 2

Constructors The tables in the constructors array must contain the following key/value pairs:

Ź haskell-type (String) the Haskell type of the data constructor.

Ź haskell-name (String) the Haskell name of the data constructor.

Ź coq-name (String) the identifier of the corresponding Coq data constructor.

Ź coq-smart-name (String) the identifier of the corresponding Coq smart constructor.

1https://github.com/toml-lang/toml
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Ź arity (Integer) the number of arguments expected by the data constructor.

For example, the following entry defines the data constructor for pairs.

[[constructors]]

haskell-type = "a -> b -> (a, b)"

haskell-name = "(,)"

coq-name = "pair_"

coq-smart-name = "Pair_"

arity = 2

Functions The tables in the functions array must contain the following key/value pairs:

Ź haskell-type (String) the Haskell type of the function.

Ź haskell-name (String) the Haskell name of the function.

Ź coq-name (String) the identifier of the corresponding Coq function.

Ź arity (Integer) the number of arguments expected by the function.

For example, the following entry defines the equality test for integers.

[[functions]]

haskell-type = "Integer -> Integer -> Bool"

haskell-name = "=="

coq-name = "eqInteger"

arity = 2
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