
Formalizing inference systems in Coq by
means of type systems for Curry

Niels Bunkenburg

Bachelor’s Thesis
Programming Languages and Compiler Construction

Department of Computer Science
Christian-Albrechts-University of Kiel

Advised by
Prof. Dr. Michael Hanus
M. Sc. Sandra Dylus

September 26, 2016

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Aus
fremden Quellen direkt oder indirekt übernommene Gedanken sind als solche kenntlich
gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen
Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

ii

Contents

1. Introduction 1

2. Preliminaries 3
2.1. Coq . 3

2.1.1. Data Types and Functions . 3
2.1.2. Propositions and Proofs . 5
2.1.3. Higher-order Functions . 8
2.1.4. Inductively Defined Propositions 9

2.2. Curry . 11
2.3. Theory . 14

3. CuMin 17
3.1. Syntax . 17
3.2. Context . 19
3.3. Data types . 20
3.4. Typing . 21
3.5. Examples . 26
3.6. Automated Proofs . 29

4. FlatCurry 31
4.1. Syntax . 31
4.2. Context . 35
4.3. Typing . 36
4.4. Transformation of FlatCurry into Coq . 43
4.5. Examples . 44

5. Conclusion 49
5.1. Summary and Results . 49
5.2. Related and Future Work . 50

A. Usage 52

iv

1. Introduction

Does a program behave as intended? This question is a fundamental part of the formal
verification of software. One aspect of formal verification is deductive verification, that is,
formally representing and proving properties about programs[Filliâtre, 2011]. Interactive
theorem provers, such as Coq1, offer a specification language to represent programs and
verification logic to argue about properties of the program. Figure 1.1 shows CoqIde,
a graphical interface for Coq. The specification is written on the left-hand side; the
right-hand side contains an overview of the remaining goals in a proof.

Figure 1.1.: CoqIde, a graphical interface for Coq

In the following chapters, we will use Coq to formalize inference systems, particularly
type systems for the functional logic programming language Curry2. Type systems are
an important concept of strongly typed languages like Curry. Every function and ex-
pression has a specific type that, if not explicitly stated, is inferred and checked by the
compiler. The process of typing expressions follows a set of inference rules that define
conditions, which need to be met in order for an expression to be of a certain type. The
formalization of these rules is one aspect that is presented in the following chapters.

1https://coq.inria.fr/
2http://curry-language.org/

1

1. Introduction

The goal of this thesis is to find an appropriate representation of Curry code in Coq and
to implement the inference rules of the type system in order to verify properties of Curry
programs. Furthermore, the implementation should provide a basis for the formalization
of further aspects of Curry.

This thesis is structured the following way: We begin with preliminaries in chapter 2,
which includes a basic introduction to Coq and Curry. The last section of the chapter
gives a theoretical overview of the approach used in the following chapters.

Both chapters 3 and 4 are structured similarly: Chapter 3 features the language CuMin,
a minimal representation of Curry mostly used in theoretical contexts, while chapter 4
focuses on FlatCurry, a more practical representation that is used as an intermediary
language for some Curry compilers. The common approach in these chapters includes
discussing and implementing the syntax of both languages and the type system. Chap-
ter 3 ends with a few examples and a section about automated proofs, while chapter 4
is concluded with a program that transforms Curry programs into a Coq-compatible form.

The last chapter discusses the results and possible expansion thereof, as well as related
work.

2

2. Preliminaries

This chapter introduces the two main programming languages used in this thesis: Coq
and Curry. The introduction of Coq is based on Software Foundations by Pierce et al.
[2016] and gives an overview of modeling and proofs in Coq. In case of Curry, we focus
on the extended features compared to Haskell.

2.1. Coq

The formalization of Curry programs requires a language that allows us to express the
code itself and propositions we intend to prove. Coq is an interactive proof management
system created by The Coq Development Team [2016] that meets these requirements
with its functional modeling language and integrated verification logic.
We already saw CoqIde in Figure 1.1, but this is not the only Coq front-end. There

is also the Emacs package Proof General1 that integrates multiple interactive theorem
provers like Coq into the text editor.
Regardless of the interface chosen, the structure is similar to the following: The left-

hand side contains the code, while the right-hand side shows information about proofs
and error messages. Definitions in Coq are always completed by a dot that marks a
segment. Depending on the front-end, there may be buttons or shortcuts to load one
segment at a time, multiple segments or the whole file. A loaded segment is usually
highlighted green, which means that the definition contains no errors.
Because of this approach, definitions that reference other definitions need to be in the

correct order, that is, a function or data structure needs to be defined before it can be
used in an expression.

2.1.1. Data Types and Functions

Coq’s predefined definitions, contrary to e.g. Haskell’s Prelude, are rather limited. Nev-
ertheless, being a functional language, there is a powerful mechanism for defining new
data types. The following example shows the definition of a polymorphic list.

Inductive list (X : Type) : Type :=
| nil : list X
| cons : X -> list X -> list X.

The definition begins with the keyword Inductive, followed by the name of the data
type and its arguments, that is, a Type in this case. The return type, marked by a colon,

1https://proofgeneral.github.io/

3

2. Preliminaries

is also a Type. The inductive definition list has two constructors: the constant nil,
which represents an empty list, and a binary constructor cons that takes an element
and a list of the same type as arguments. In fact, nil and cons have one additional
argument, a type X.

> Check cons nat 8 (nil nat).
cons nat 8 (nil nat) : list nat

This is required because the list is supposed to be polymorphic, but we do not want
to explicitly state the type. Fortunately, Coq allows us to declare type arguments as
implicit by enclosing them in curly brackets in the original definition or using Arguments
followed by the name of the function and the arguments to do this afterwards.

Arguments nil {X}.
Arguments cons {X} _ _.

> Check cons 8 nil.
cons 8 nil: list nat

Coq’s type inference system infers the type of a list automatically now if possible. In
some cases this does not work because there is not enough information about the implicit
types present, as shown below.

Fail Definition double_cons x y z := (cons x (cons y z)).
Definition double_cons {A} x y z := (@cons A x (@cons A y z)).

The first definition does not work, as indicated by Fail2, because Coq cannot infer the
implicit type variable of double_cons since cons does not have a type argument either.
By prefixing at least one cons with @, we can tell Coq to accept explicit expressions for
all implicit arguments. This allows us to pass the type of cons on to double_cons, again
as an implicit argument.

> Check double_cons 2 4 nil.
double_cons 2 4 nil : list nat
> Check cons 2 (cons nil nil).
(* Error: The term "cons nil nil" has type "list (list ?X0)"
while it is expected to have type "list nat". *)

As expected, the type inference system recognizes invalid expressions. Based on this
definition of lists, we can write a polymorphic function that determines if a list is empty,
as shown in the next example.

Definition isEmpty {X : Type} (l : list X) : bool :=
match l with
| nil => true
| cons _ _ => false
end.

2Fail checks if an expression does indeed cause an error and allows further processing of the file.

4

2.1. Coq

Function definitions begin with the keyword Definition. isEmpty takes an (implicit)
type and a list and returns a boolean value. To distinguish empty from non-empty lists,
pattern matching can be used on n arguments by writing match x0, ..., xm with b end.
where m < n and b is a list of branches. Because the arguments need to be explicitly
stated in order to be pattern matched, it is possible to use pattern matching only on a
subset of the arguments. Multiple patterns are separated by commas and thus, patterns
do not need to be enclosed in brackets.
A branch contains a pattern and an expression. Multiple branches are separated by

vertical lines and need to be exhaustive, that is, cover every constructor of the argument.
If there are overlapping patterns, Coq prints an error message stating that the respective
clause is redundant.
A recursive function must be explicitly marked by using Fixpoint instead of Definition.

The definition of recursive functions requires that the function is called with a smaller
structure than before in each iteration, which ensures that the function eventually ter-
minates. In the following example app appends two lists. As mentioned before, only the
first list is pattern matched because we do not need to access the second list’s structure.

Fixpoint app {X : Type} (l1 l2 : list X) : (list X) :=
match l1 with
| nil => l2
| cons h t => cons h (app t l2)
end.

In this case l1 is shortened with every iteration and thus, the function terminates after a
finite number of recursions.
Coq allows us to define notations for functions and constructors by using the keyword

Notation, followed by the desired syntax and the expression. Sometimes it is necessary
to state the level, that is, the priority when used with other notations, and associativity
of the notation. List elements are commonly separated by semicolons in Coq.

Notation "x :: y" := (cons x y) (at level 60, right associativity).
Notation "[]" := nil.
Notation "[x ; .. ; y]" := (cons x .. (cons y []) ..).
Notation "x ++ y" := (app x y) (at level 60, right associativity).

2.1.2. Propositions and Proofs

Every claim that we state or want to prove has the type Prop. Propositions can be any
statement, regardless of its truth.

Check 1 + 1 = 2. (* : Prop *)
Check forall (X : Type) (l : list X), l ++ [] = l. (* : Prop *)
Check forall (n : nat), n > 0 -> n * n > 0. (* : Prop *)
Check (fun n => n <> 2). (* : nat -> Prop*)

The first proposition is a simple equation, while the second one contains the universal
quantifier forall. This allows us to state propositions about, for example, every type of
list, or, as shown in the third example, about every natural number greater than zero.

5

2. Preliminaries

Combined with implications, that are represented by the symbol ->, we can premise
specific properties that limit the set of elements the proposition applies to. The last
example contains an anonymous function, which is indicated by the keyword fun followed
by variable binders. The expression after the => can be a simple expression or pattern
matching, for example (fun p => match p with (x,y) => x end).
Now, how do we prove these propositions? Proving an equation requires to show that

both sides are equal, usually by simplifying one side until it looks exactly like the other.
Coq allows us to do this by using tactics, which can perform a multitude of different
operations.

Example e1 : 1 + 1 = 2.
Proof. simpl. reflexivity. Qed.

After naming the proposition as an example, theorem or lemma it appears in the inter-
active subgoal list that Coq provides.

1 subgoal
______________________________________(1/1)
1 + 1 = 2

The simpl tactic performs basic simplification like adding two numbers in this case. The
updated subgoal is now 2 = 2, which is obviously true. By using the reflexivity tactic
we tell Coq to check both sides for equality, which succeeds and clears the subgoal list,
followed by Qed to complete the proof.

Example e2 : forall (X : Type) (l : list X), [] ++ l = l.
Proof. intros X l. reflexivity. Qed.

Universal quantifiers allow us to introduce variables, the corresponding tactic is called
intros and is used with the names of the variables that are introduced. The new context
contains a type X and a list l.

1 subgoal
X : Type
l : list X
______________________________________(1/1)
[] ++ l = l

Because we defined app to return the second argument if the first one is an empty
list, reflexivity directly proves our goal. reflexivity is not only useful for obvious
equations, it also simplifies and unfolds definitions until the flat terms match each other
if possible, otherwise it fails with an error message.
To prove that the proposition l ++ [] = l holds, we need more advanced tactics

because we cannot simply apply the definition. The function app works by iterating
through the first list, but we need to prove the proposition for every list, regardless of
its length. One possibility to solve this problem is by using structural induction, that is,
showing that every constructor of a data type satisfies the proposition.

6

2.1. Coq

Example e3 : forall (X : Type) (l : list X), l ++ [] = l.
Proof. intros X. induction l as [|l ls IH].

reflexivity.
simpl. rewrite IH. reflexivity.

Qed.

The proof begins by introducing the type X, followed by the induction tactic applied
to l. Coq names newly introduced variables by itself, which can be done manually by
adding as [c1|...|cn] to the tactic. Each ci represents a sequence of variable names,
which will be used when introducing variables in the corresponding subgoal. For every
constructor a subgoal is generated, ordered as listed in the definition of the data type.

X : Type
______________________________________(1/2)
[] ++ [] = []
______________________________________(2/2)
(l :: ls) ++ [] = l :: ls

Now we need to prove that the proposition holds for two subgoals: the empty list and
a cons construct. The first subgoal does not require any new variable names since l is
replaced by the empty list. Therefore, the first section in the squared brackets is empty.
The subgoal is easily solved by applying reflexivity because of the definition of app.
The second case requires variables for the list’s head and tail, which we call l and ls

respectively. The variable name IH identifies the induction hypothesis ls ++ [] = ls,
which Coq generates automatically.

X : Type
l : X
ls : list X
IH : ls ++ [] = ls
______________________________________(1/1)
(l :: ls) ++ [] = l :: ls

The remaining proof is finished by using simpl and rewrite IH. The tactic rewrite
changes the current goal by replacing every occurrence of the left side of the provided
equation with the right side.

l :: ls ++ [] = l :: ls (* simpl *)
l :: ls = l :: ls (* rewrite with IH *)

Both sides are equal now and therefore, reflexivity proves the last subgoal.

Example e4 is different from the other examples, in the sense that one cannot prove a
function by itself and that only supplying an argument to the function returns a verifiable
inequality. Therefore, we apply the function to 1 and prove that 1 6= 2. This proof is
not as simple as the other ones, mainly because of the inequality, which is a notation3

for not (x = y).
3It is often useful to be able to look up notations, Locate "<>" . returns the term associated with <>.

7

2. Preliminaries

Example e4 : (fun n => n <> 2) 1.
Proof.

simpl. (* 1 <> 2 *)
unfold not. (* 1 = 2 -> False *)
intros H. (* H : 1 = 2, False *)
inversion H.

Qed.

Because not is the outermost term, we need to eliminate it first by applying unfold,
which replaces not with its definition fun A : Prop => A -> False, where False is
the unprovable proposition. Why does this work? Assuming that a proposition P is true,
not Pmeans P -> False, which is false, because something true cannot imply something
false. On the other hand, if P is false, then False -> False is true because anything
follows from falsehood.
After using simpl and unfold not, the current goal is 1 = 2 -> False. Introducing

1 = 2 as an hypothesis H with intros leaves False as the remaining goal. Intuitively we
know that H is false, but Coq needs a justification for this claim. Conveniently, the tactic
inversion solves this problem by applying two core principles of inductively defined data
types:

• Injectivity: C n = C m implies that n and m are equal for a constructor C.

• Disjoint constructors: Values created by different constructors cannot be equal.

By applying inversion to the hypothesis 2 = 1 we tell Coq to add all inferable equa-
tions as additional hypotheses. In this case we start with 2 = 1 or the Peano number
representation S(S(O)) = S(0). Injectivity implies that if the previous equation was
true, S(O) = O must also be true. This is obviously false since it would allow two differ-
ent representations of nil. Hence, using inversion with the hypothesis 2 = 1 infers the
current goal False, which concludes the proof.

2.1.3. Higher-order Functions

Functions can be passed as arguments to other functions or returned as a result, they are
first-class citizens in Coq. This allows us create higher-order functions like map, which
applies a function to every element of a list.

Fixpoint map {X Y : Type} (f : X -> Y) (l : list X) : (list Y) :=
match l with
| [] => []
| h :: t => (f h) :: (map f t)
end.

Function types are represented by combining two or more type variables with an arrow.
Coq does not only allow higher-order functions but also higher-order propositions. A
predefined example is Forall, which features a A -> Prop construct from the last section.

Forall : forall A : Type, (A -> Prop) -> list A -> Prop

8

2.1. Coq

Forall takes a property of A, that is, a function that returns a Prop for any given A, plus
a list of A and returns a proposition. It works by applying the property to every element
of the given list and can be proven by showing that all elements satisfy the property.

Example e5 : Forall (fun n => n <> 8) [2;4].
Proof.

apply Forall_cons. intros H. inversion H.
(* Forall (fun n : nat => n <> 8) [4] *)
apply Forall_cons. intros H. inversion H.
(* Forall (fun n : nat => n <> 8) [] *)
apply Forall_nil.

Qed.

Forall is an inductively defined proposition, which requires rules to be applied in order
to prove a certain goal. This will be further explained in the next section, for now it
sufficient to know that Forall can be proven by applying the rules Forall_cons and
Forall_nil, depending on the remaining list. Because we begin with a non-empty list, we
have to apply Forall_cons. The goal changes to 2 <> 8, the head of the list applied to
the property. We have already proven this type of inequality before, inversion is actually
able to do most of the work we did manually by itself. Then, the same procedure needs
to be done for the list’s tail [4], which works exactly the same as before. To conclude
the proof, we need to show that the property is satisfied by the empty list. Forall_nil
covers this case, which is trivially fulfilled.

2.1.4. Inductively Defined Propositions

Properties of a data type can be written in multiple ways, two of which we already
discussed: boolean equations of the form f x = true and functions that return propo-
sitions. For example, the function inB returns true if a nat is contained in a list.

Fixpoint inB (x : nat) (l : list nat) : bool :=
match l with
| [] => false
| x' :: l' => if (beq_nat x x') then true else inB x l'
end.

Example e6 : inB 42 [1;2;42] = true.
Proof. reflexivity. Qed.

Because inB returns a boolean value, we have to check for equality with true in order
to get a provable proposition. The proof is fairly simple, reflexivity evaluates the
expression and checks the equation, nothing more needs to be done.

Properties are another approach that works equally well. The following definition con-
nects multiple equations by disjunction, noted as \/. This operator is not the boolean
disjunction but a disjunction of propositions. It can be proven by showing that either
one of the arguments is true. In the example at least one equation needs to be true in
order for the whole disjunction to be true.

9

2. Preliminaries

Fixpoint In (x : nat) (l : list nat) : Prop :=
match l with
| [] => False
| x' :: l' => x' = x \/ In x l'
end.

Example e7 : In 42 [1;2;42].
Proof.

simpl. (* 1 = 42 \/ 2 = 42 \/ 42 = 42 \/ False *)
right. (* 2 = 42 \/ 42 = 42 \/ False *)
right. (* 42 = 42 \/ False *)
left. (* 42 = 42 *)
reflexivity.

Qed.

Proving the same example as before, we need new tactics to work with logical connec-
tives. By simplifying the original statement we get a disjunction of equations for every
element in the list. If we want to show that a disjunction is true, we need to choose a side
we believe to be true and prove it. left and right keep only the respective side as the
current goal, discarding the other one. A similar tactic exists for the logical conjunction
/\, with the difference that split keeps both sides as subgoals since a conjunction is
only true if both sides are true.

The last option to describe this property is by using inductively defined propositions. As
already mentioned before, inductively defined propositions consist of rules that describe
how an argument can satisfy the proposition.

Inductive inInd : nat -> list nat -> Prop :=
| head : forall n l, inInd n (n :: l)
| tail : forall n l e, inInd n l -> inInd n (e :: l).

The rule head states that the list’s head is an element of the list. The second rule tail
covers the case that if an element is contained in a list, it is also an element of the same
list prefixed by another element.

Example e8 : inInd 42 [2;42].
Proof.

apply tail. (* inInd 42 [42] *)
apply head.

Qed.

The interesting part about this proof is the deductive approach. Previously we started
with a proposition and constructed evidence of its truth. In this case we use inInd’s
rules "backwards": Because we want to show that 42 is an element of [2;42]], we need
to argue that it is contained within the list’s tail. Since it is the head of [42], we can
then apply head and conclude that the previous statement must also be true because we
required 42 to be contained in the list’s tail, which is true.
Inductively defined propositions will play an important role in the following chapters.

Hence, some more examples:

10

2.2. Curry

Inductive Forall {A : Type} (P : A -> Prop) : list A -> Prop :=
| Forall_nil : Forall P []
| Forall_cons : forall (x : A) (l : list A), P x -> Forall P l ->

Forall P (x :: l).

We already used Forall in the previous section without knowing the exact definition,
the rules are fairly intuitive. According to Forall_nil, a proposition is always true for
the empty list. If the list is non-empty, the first element and every element in the list’s
tail have to satisfy the property, as stated by Forall_cons, in order for the whole list to
satisfy the property.
This pattern can be expanded to more complex inductive propositions like Forall2,

which takes a binary property P plus two lists a, b and checks if P ai bi holds for every
i < length l.

> Check Forall2.
Forall2 : forall A B : Type, (A -> B -> Prop) -> list A -> list B -> Prop

To summarize this section, we began with inductive data types that we expanded to
have implicit type arguments. We defined functions and discussed the restrictions Coq
enforces in order to prevent infinite loops, followed by notations that allow us to use list
constructors conveniently. Then, we discussed propositions and proved some examples,
in which we used some more advanced tactics like induction and inversion. Lastly, we
learned about higher-order constructs and inductively defined propositions like Forall.

2.2. Curry

Curry[Hanus et al., 2016] is a programming language that combines aspects of functional
and logical programming. Created by an international initiative, Curry is predominantly
aimed at providing a platform for research and teaching. Curry’s syntax is similar to the
functional programming language Haskell with the addition of nondeterminism, that is,
a function can return different values for the same input, and free variables, which allow
the systematic search for unknown values.
The similarities to Haskell include an (interactive) compiler named KiCS24 that com-

piles Curry programs to Haskell code and an easily searchable5, extensive module system
with many predefined data structures and functions. In this short overview we will take
a look at some language features that we will work with later, albeit not necessarily in
the form of Curry code.

Curry programs have the ending .curry and consist of function and data type declara-
tions. The simplest form of functions, such as double x = x + x, has a name, a possibly
empty list of variables and an expression. Although it is not mandatory to explicitly state
a function’s type, for example double :: Int → Int → Int, every function has a type
that describes the arguments and the result of evaluating the function.

4https://www-ps.informatik.uni-kiel.de/kics2/
5https://www-ps.informatik.uni-kiel.de/kics2/currygle/

11

2. Preliminaries

When a function call is evaluated, the left-hand side is replaced with the right-hand
side until there is no further evaluation possible, that is, only literal values or data struc-
tures remain. The evaluation can result in an infinite loop, for example the infinite list
twos = 2 : twos, or not compute any values. Infinite data structures are processed by
computing the value of an expression only if it is actually needed, called lazy evaluation.

Besides functions, there is another important element of functional programming: data
types. A data type is generally of the form data Name v1 . . . vn = C1T1| . . . |CmTm where
vi are type variables, Ci are constructor names and Ti are lists of types, which can
include the type variables vi. Simple data types like Bool do not have type variables, but
polymorphic types like Maybe can contain any data type to represent optional values.

data Bool = True | False
data Maybe a = Nothing | Just a

Nondeterminism More advanced functions use multiple rules and pattern matching
to describe different computational paths. By using a pattern in the left-hand side of a
rule, it is limited to arguments of a specific form. Thus, functions that process data types
with multiple constructors can have a different rule for every constructor. While Haskell
allows overlapping patterns, that is, multiple patterns that apply to the same argument,
functions remain deterministic because only the first rule that matches the argument is
evaluated. Curry does not limit the evaluation – a function with overlapping patterns can
return every possible result an input evaluates to. On the other hand, patterns do not
need to be exhaustive, that is, cover every possible input, because a failed computation
is a valid result unlike the exception Haskell returns.

failed = head []
eight = failed ? 8

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

The function head returns the first element of a list, but in this case the list is empty.
Therefore, the computation fails and KiCS2 returns an exclamation mark. Nevertheless,
it is possible to apply the ? operator that represents a nondeterministic choice between
the arguments to both the failed computation and the number 8. Since only one argument
evaluates to a value, the result is 8.
In some situations deterministic programs are strictly necessary, for example when

working with IO actions. While it may not seem import if a function prints an ’a’ or ’b’
to the terminal, writing a file of nondeterministic size to the hard drive can cause severe
problems. Fortunately, Curry enforces determinism when using IO actions. If one needs
a more Haskell-esque evaluation of multiple patterns, the case expression applies:

maybeNot True = False
maybeNot True = True
maybeNot False = True
maybeNot False = False

notCase b =
case b of

True -> False
True -> True
False -> True
False -> False

maybeNotCase b =
case b of

True -> False ? True
False -> True ? False

12

2.2. Curry

Pattern matching in a function can be transformed to a corresponding case expression
by replacing the pattern with a variable and creating a branch for every rule. The
difference is that case expressions evaluate only the first matching branch. Thus, the
second and fourth branch of caseNot are not reachable and the function is deterministic.
If nondeterminism is needed in a case expression, the ? operator is necessary, as shown
in the function maybeNotCase.

Free Variables Unknown values are represented in Curry by free variables, that is,
variables that are not bound to an expression. They are declared by adding where
v1 . . . vn free to a term containing free variables v1 . . . vn. To evaluate such a term, the
variables are instantiated with a value of appropriate type.

> False && x where x free
{x = _x0} False

In the above example, the boolean conjunction of False and a free variable evaluates to
another free variable _x0 because the expression is false for every possible value of x.
Free variables can be used to compute the possible values of an expression, but there are

more sophisticated applications: Curry can solve constraints, for example the equation
1 + 1 == x where x free. Solving the expression results in multiple values for x and
the corresponding value of the equation:

{x = (-_x2)} False
{x = 0} False
{x = 1} False
{x = 2} True
{x = (2 * _x3 + 1)} False
{x = (4 * _x4)} False
{x = (4 * _x4 + 2)} False

Curry solves the equation by using narrowing, that is, guessing values that could satisfy
the constraints[Hanus, 2013]. Since the sum of two positive numbers cannot be negative,
only positive numbers are potential solutions. 2 fulfills the equation, but there could be
more solutions. Therefore, odd numbers and even numbers greater than 2 are checked,
both of which cannot satisfy the constraint. Since this includes all possible integer values,
2 remains the only solution. Free variables with non-basic types are evaluated similarly
by trying every possible constructor.
An alternative approach to solving constraints is residuation: If an expression cannot

be solved because of an unknown free variable, the evaluation is suspended until its value
is known from evaluating other expressions. It is possible that there is not enough infor-
mation to determine the variable’s value, in which case the evaluation fails.

In summary, we looked at the basic structure of a Curry program and function definitions.
Regarding functions, we discussed lazy evaluation and nondeterminism as well as its
consequences when evaluating functions. Finally, we used free variables and learned
about the different approaches to evaluating such expressions: narrowing and residuation.

13

2. Preliminaries

2.3. Theory

In this section we discuss the theoretical basics of the following chapters. First and
foremost, what is typing? In functional languages a data type is a classification of
applicable operators and properties of its members. There are base types that store
a single date and more complex types that may have multiple constructors and type
variables. Typing describes the process of assigning types to expressions in order to
avoid programming errors, for example calling an arithmetic function with a character.
Typing an expression requires a context that contains data type definitions, function
declarations and a map that assigns types to variables. Without a context, expressions
do not have any useful meaning – A 42 could be typed as a character and a number,
the application of a function A to 42, a variable, etc. The majority of information in a
context can be extracted from the source code of a program and is continually updated
while typing expressions.
In the following chapters we are going to formalize the typing systems of two represen-
tations of Curry programs. This process consists of:

1. Creating

• a Coq data structure that represents the program.

• a context that contains all necessary information for typing expressions.

2. Formalizing typing rules with inductively defined propositions.

3. Transferring programs into Coq syntax and using typing rules to prove propositions
about the program.

Representation To represent a program in Coq, we need to list all elements it can
possibly contain and link them together in a meaningful way. In case of CuMin this
is relatively easy; a program consists of function declarations, which have a signature
and a body. Signatures combine quantifiers and type variables, while the body con-
tains variables and expressions. The resulting typing rules are simple because types and
expressions are very specific and some procedures are simplified, for example, it is not
allowed to supply more than one argument to a function at a time.
While FlatCurry is designed to accurately represent Curry code and therefore has a

more abstract program structure, the basic layout is similar. A program consists of a
name, imported modules and declarations of functions, data types and operators. The
latter two are not present in CuMin, but function declarations have a similar structure
with additional information, such as the function’s arity and visibility.
Types and expressions in FlatCurry are not as specific as in CuMin, for example,

CuMin has an explicitly defined data type Bool with a case expression that works with
Bool values only, while FlatCurry uses the data type constructor to represent the Bool
type. FlatCurry’s case expression works with arbitrary values and therefore, the typing
rules are more complex.

14

2.3. Theory

Context Both CuMin and FlatCurry need a context that maps keys to values, that
is, variables to types or names to declarations. There are many options to implement a
map, such as a list of pairs, but we will use functions instead because it resembles the
formal notation we will use later more closely.

Definition total_map (K V : Type) := K -> V.
Definition partial_map (K V : Type) := total_map K (option V).

A total map is a function that takes a key value of type K and returns a value of type V.
Because we define maps for arbitrary keys and values, the same definition can be used
for CuMin and FlatCurry. A context contains only information about certain variables
or functions, not for every possible key value. Thus, we define a partial map by adding
an option to the value, that is, known keys yield Some v and others None.

An empty total map is a function that returns the same value v for every key. In case of
the partial map, the default value is None.

Definition emptytmap {K V : Type} (v : V) : total_map K V := (fun _ => v).
Definition emptymap {K V :Type} : partial_map K V := emptytmap None.

Updating a total map works by calling t_update with a boolean equality function beq
between keys, a total map m, key k and value v. To update a partial map with the value
v, we use t_update with Some v.

Definition t_update {K V : Type} (beq : K -> K -> bool) (m : total_map K V)
(k : K) (v : V) := fun k' => if beq k k' then v else m k'.
Definition update {K V : Type} (beq : K -> K -> bool) (m : partial_map K V)
(k : K) (v : V) := t_update beq m k (Some v).

The result of t_update is a function that takes a key k’ and applies beq to k’ and k. If
the keys are equal, the value is returned, otherwise the key is applied to the map m.

pmap = update beq_nat 1 Int emptymap
--> fun k' => if (beq_nat 1 k') then (Some Int) else (emptymap k')
pmap2 = update beq_nat 2 Char pmap
--> fun k' => if (beq_nat 2 k') then (Some Char) else (pmap k')

This implementation of a map is constructed by linking multiple functions together. Each
function compares the supplied key with its key and if they differ, passes it to the next
function. When looking up a key in a map, the key is compared to the last added entry
first. An unknown key is checked by every function until finally emptymap returns None.

Inference rules In the following chapters we will work with typing rules, that is, a rule
that states conditions which need to be satisfied in order for an expression to have a
certain type. In Coq we use such rules as part of an inductively defined proposition, but
this usually includes implementation-specific details. Therefore, we use a more formal
notation: inference rules. An inference rule consists of an optional list of premises that
needs to be fulfilled in order for the conclusion below the line to hold, similar to an
implication.

15

2. Preliminaries

Inductive inInd : nat -> list nat -> Prop :=
| head : forall n l, inInd n (n :: l)
| tail : forall n l e, inInd n l -> inInd n (e :: l).

We can describe the inductively defined proposition inInd we used in subsection 2.1.4
that represents the occurrence of an element in a list with two inference rules as shown
in Figure 2.1.

In n (n :: l)
In_H

In n l
In n (e :: l)

In_T

Figure 2.1.: Inference rules for occurrence of an element in a list

In_H does not have a premise because a list’s head is always an element of the list. Thus,
the line can be omitted. The rule In_T states that if the premise In n l is true, then
the conclusion In n (e :: l) holds. Inference rules can have multiple premises p1 . . . pn
that are treated as multiple implications p1 → · · · → pn → c with the conclusion c.

Even though the line may imply that premises and the conclusion are independent from
each other or that there is a chronological order, this is not necessarily the case. The
premises can contain variables that are unknown until the conclusion is evaluated, as we
will see when typing FlatCurry expressions in section 4.3.

16

3. CuMin

CuMin (for Curry Minor) is a simplified sublanguage of Curry introduced by Mehner
et al. [2014]. The syntax of CuMin is restricted and thus allows more concrete types
and typing rules, compared to FlatCurry. Although it requires some transformations to
substitute missing constructs, CuMin can express the majority of Curry programs. In
the following sections we will take a look at CuMin’s syntax, create a suitable context
and discuss data types, followed by the formal definition and implementation of typing
rules as well as some examples. In the concluding section of this chapter we will see some
more advanced tactics that are able to fully automate simple proofs.

3.1. Syntax

The Backus-Naur Form (BNF) is a formalism to describe context-free grammars and
languages like CuMin. A BNF definition is a set of derivation rules S ::= A1| . . . |An where
S is a nonterminal, that is, a symbol that can be replaced by any of the n sequences Ai
on the right-hand side. A sequence is a combination of symbols and other characters that
form an expression. If a symbol occurs only on the right-hand side of a rule, it is called a
terminal because it cannot be replaced. Figure 3.1 shows the syntax of CuMin in BNF.

P ::= D;P |D
D ::= f :: κτ ; fxn = e

κ ::= ∀εα.κ | ∀∗α.κ | ε
τ ::= α | Bool |Nat | [τ] | (τ, τ ′) | τ → τ ′

e ::= x | fτm | e1 e2 | let x = e1 in e2 | n | e1 + e2 | e1 $ e2

| (e1, e2) | case e of 〈(x, y)→ e1〉
| True | False | case e of 〈True→ e1; False→ e2〉
|Nilτ | Cons(e1, e2) | case e of 〈Nil→ e1; Cons(x, y)→ e2〉
| failureτ | anythingτ

Figure 3.1.: Syntax of CuMin

A program P is a list of function declarations D, which contain a function name f , a list
of quantifiers κ, a type τ and a function definition. Quantifiers have a tag t ∈ {ε, ∗} that
determines valid types the variable α can be substituted with. Star-tagged type variables
can only be specialized to non-functional types, while ε allows every specialization.

17

3. CuMin

The notation xn in function definitions represents n variables x1, ..., xn that occur after
the function name and are followed by an expression e. A function’s type τ can consist
of type variables, basic types like Bool or Nat, lists, pairs and functions. The following
example shows function definitions for fst, which returns the first element of a pair, and
the application of fst to a pair.

fst :: ∀∗α.∀∗β.(α, β)→ α

fst p = case p of 〈(u, v)→ u〉
one :: Nat
one = fstNat,Bool (1,True)

Polymorphic functions like fst need to be explicitly specialized before they are applied
to another expression, as shown by the function one, because there is no type inference.
Both type variables α and β in the signature of fst need to be specialized explicitly.
Thus, fst is called with Nat and Bool, that is, the types of the first and second component
of the pair.
Besides function application, expressions can be literal boolean values and natural

numbers, variables, arithmetic expressions, let bindings or case constructs and construc-
tors for pairs and lists. The two remaining expressions arise from Curry’s logical parts:
anythingτ represents every possible value of type τ , similar to free variables. failureτ
represents a failed computation, for example anythingNat + 2 $ 0. Since anythingNat
can be evaluated to positive numbers only, the equation always fails.
The Coq implementation follows the theoretical description closely. Variables, quanti-

fiers, functions and programs are identified by an id instead of a name to simplify com-
paring values. Case expressions for lists and pairs have two id arguments that represent
the variables x and y, that is, the head/tail or left/right component of the expression e.

Inductive id : Type :=
| Id : nat -> id.

Inductive tag : Type :=
| tag_star : tag
| tag_empty : tag.

Inductive quantifier : Type :=
| for_all : id -> tag -> quantifier.

Inductive ty : Type :=
| TVar : id -> ty
| TBool : ty
| TNat : ty
| TList : ty -> ty
| TPair : ty -> ty -> ty
| TFun : ty -> ty -> ty.

Definition program := list func_decl.
Inductive func_decl : Type :=

| FDecl : id -> list quantifier ->
ty -> list id -> tm -> func_decl.

Inductive tm : Type :=
| tvar : id -> tm
| tapp : tm -> tm -> tm
| tfun : id -> list ty -> tm
| tlet : id -> tm -> tm -> tm
| ttrue : tm
| tfalse : tm
| tfail : ty -> tm
| tany : ty -> tm
| tzero : tm
| tsucc : tm -> tm
| tadd : tm -> tm -> tm
| teqn : tm -> tm -> tm
| tpair : tm -> tm -> tm
| tnil : ty -> tm
| tcons : tm -> tm -> tm
| tcaseb : tm -> tm -> tm -> tm
| tcasep : tm -> id -> id -> tm ->

tm
| tcasel : tm -> id -> id -> tm ->

tm -> tm.

18

3.2. Context

Shown below is the definition of fst in Coq syntax. All names are substituted by IDs,
which do not necessarily need to be distinct from each other in general but within their
respective domain. Quantifier IDs are used in the function’s type to represent type
variables, following the previous definition.

FDecl (Id 0)
[for_all (Id 1) tag_star; for_all (Id 2) tag_star]
(TFun (TPair (TVar (Id 1)) (TVar (Id 2))) (TVar (Id 1)))
[Id 3]
(tcasep (tvar (Id 3)) (Id 4) (Id 5) (tvar (Id 4))).

The argument IDs of the function need to appear in the following term, in this case Id 3
is passed to a case expression. The IDs Id 4 and Id 5 represent the left and right side
of the pair Id 3, of which at least one needs to occur in the next term, otherwise the
function is constant.

3.2. Context

As mentioned in section 2.3, we need a context in order to be able to type CuMin
expressions. This basic version contains no program information and stores two partial
maps: the first one maps type variable IDs to tags, the other variable IDs to types.

Inductive context : Type :=
| con : (partial_map id tag) -> (partial_map id ty) -> context.

There are two selector functions tag_con and type_con that allow accessing the cor-
responding maps of a context and two update functions tag_update and type_update
that add or update values.
Since the program is not part of the context, we need another way to make it accessible.

One option are local variables, which are introduced by writing Variable name : type.
They can be used in place of a regular function argument, for example as shown in the
predefined map function. The scope of a variable is limited by the section it is defined in.
Sections are used to structure source files and to allow local declarations. In this case,
map is contained in the section Map.

Section Map.
Variables (A : Type) (B : Type).
Variable f : A -> B.

Fixpoint map (l:list A) : list B :=
match l with
| [] => []
| a :: t => (f a) :: (map t)
end.

End Map.

Even though A and B are not introduced as types in the signature, they can be used to
parametrize lists. Likewise, f can be applied to arguments despite the missing function

19

3. CuMin

argument map usually has. Although functions containing variables can be defined this
way, they are only usable outside of the own section because variables have a type but
no value. Outside of the section all variables used in a definition are appended to the
type, for example, the type of map has additional type and function arguments outside
of the section Map.

> Check map. (* inside of section *)
map : list A -> list B

> Check map. (* outside of section *)
map : forall A B : Type, (A -> B) -> list A -> list B*)

3.3. Data types

Γ, α∗ ` α ∈ Data Γ ` Bool ∈ Data Γ ` Nat ∈ Data

Γ ` τ ∈ Data
Γ ` [τ] ∈ Data

Γ ` τ ∈ Data Γ ` τ ′ ∈ Data
Γ ` (τ, τ ′) ∈ Data

Figure 3.2.: Rules for being a data type

CuMin does not allow data type constructs containing functions, for example a list of
functions. Instead, data types can be constructed only by combining basic types, poly-
morphic variables and lists or pairs. There is no syntax for explicitly naming data types
or creating new constructors and therefore, data types exist only as part of a function
signature.

Reserved Notation "Gamma '|-' T 'in_Data'" (at level 40).
Inductive is_data_type : context -> ty -> Prop :=

| D_Var : forall Gamma n,
(tag_con Gamma) n = Some tag_star ->
Gamma |- (TVar n) in_Data

| D_Bool : forall Gamma, Gamma |- TBool in_Data
| D_Nat : forall Gamma, Gamma |- TNat in_Data
| D_List : forall Gamma T,

Gamma |- T in_Data ->
Gamma |- (TList T) in_Data

| D_Pair : forall Gamma T T',
Gamma |- T in_Data ->
Gamma |- T' in_Data ->
Gamma |- (TPair T T') in_Data

where "Gamma '|-' T 'in_Data'" := (is_data_type Gamma T).

The inductively defined proposition is_data_type takes a context plus a type and yields
a proposition, which can be proven using the provided rules if the type is indeed a data
type. Coq allows notations to be introduced before they are actually defined by adding

20

3.4. Typing

Reserved to a notation. The definition is specified after the last rule, prefaced by where.
The syntax used is Γ ` τ in_Data, which means that in the context Γ the type τ is a
data type. Rules follow a common structure: First, all occurring variables need to be
quantified. Then conditions can be stated, followed by an application of the inductively
defined proposition to variables or values.
The rules D_Bool and D_Nat simply state that basic types are data types. D_Var

requires type variables to have a star-tag in order to be a data type because nested
function types are not allowed. The last two rules state that lists and pairs are data
types if their argument type(s) are data types.

3.4. Typing

Typing requires a set of rules that covers every valid expression and assigns corresponding
types. The following inference rules are composed of typing relations Γ ` e :: τ that state
the type τ of an expression e in a context Γ. The notation Γ, e1 7→ τ1 ` e2 :: τ2 means
that e2 can only be typed to τ2 if Γ maps e1 to τ1. As mentioned in section 2.3, the
premises of an inference rule above the line need to be fulfilled in order for the conclusion
below to hold, that is, an expression to be typed.

Γ, x 7→ τ ` x :: τ Γ ` True :: Bool Γ ` False :: Bool Γ ` n :: Nat Γ ` Nilτ :: [τ]

Γ ` e1 :: τ1 → τ2 Γ ` e2 :: τ1

Γ ` e1e2 :: τ2

Γ ` e1 :: τ1 Γ, x 7→ τ1 ` e2 :: τ

Γ ` let x = e1 in e2 :: τ

(f :: ∀v1α1. · · · ∀vmαm.τ ; fxn = e) ∈ P

Γ ` fτm :: τ [τm/αm]
F

Γ ` e1 :: Nat Γ ` e2 :: Nat
Γ ` e1 + e2 :: Nat

Γ ` e1 :: Nat Γ ` e2 :: Nat
Γ ` e1 $ e2 :: Bool

Γ ` e1 :: τ1 Γ ` e2 :: τ2

Γ ` (e1, e2) :: (τ1, τ2)

Γ ` e1 :: τ Γ ` e2 :: [τ]

Γ ` Cons(e1, e2)

Γ ` e :: [τ ′] Γ ` e1 :: τ Γ, h 7→ τ ′, t 7→ [τ ′] ` e2 :: τ

Γ ` case e of 〈Nil→ e1; Cons(h, t)→ e2〉 :: τ

Γ ` e :: (τ1, τ2) Γ, l 7→ τ1, r 7→ τ2 ` e1 :: τ

Γ ` case e of 〈(l, r)→ e1〉 :: τ

Γ ` e :: Bool Γ ` e1 :: τ Γ ` e2 :: τ

Γ ` case e of 〈True→ e1; False→ e2〉 :: τ Γ ` failureτ :: τ

Γ ` τ ∈ Data
Γ ` anythingτ :: τ

F if for all i with vi = ∗ we have Γ ` τi ∈ Data

Figure 3.3.: Typing rules for CuMin

The first row of rules hold unconditionally: Basic expressions like boolean values and
natural numbers have the type Bool or Nat respectively and there is an empty list of
every type as well. Variables can only be typed if there is an entry in the context that
binds the variable to a type; these bindings are created in let and case expressions.
The second row begins with the application of two expressions, which requires the

first one to have a functional type and the second term to match the function’s argument
type. The resulting type may be another function or a basic type, depending on the arity
of the original function. A let construct binds a variable x to an expression e1. Using
the variable within the expression e2 requires the binding to be added to the context.
The row’s last inference rule describes typing a function call with specific types τm:

the program P must contain a matching function declaration with a list of quantified

21

3. CuMin

type variables αm. For every αi the corresponding τi needs to be a data type if their
quantifier has a star-tag because we must ensure that these variables are replaced by
non-functional types, which data types fulfill by definition. The type of a function call is
represented by the expression τ [τm/αm], which is a type substitution of every occurrence
of αi in τ with τi.
The third row contains arithmetic operations and constructors. Both + and $ can only

be applied to natural numbers; + returns a Nat and $ a Bool. In aspect of constructors,
pairs can be constructed from two expressions of arbitrary types τ1 and τ2, the resulting
type is a pair (τ1, τ2). The list constructor Cons takes two expressions e1 and e2, the
first of which needs to be a head element of type τ and the second a tail list of type [τ],
which results in a list of τ .
Case expressions have specific properties depending on the type. The first argument

has to be of the case’s type, for example Bool for the boolean case expressions. Depending
on the constructor of the term, the corresponding branch expression is returned. The
list case returns either e1 if the list is empty or e2 otherwise. In the latter case, bindings
for the list’s head and tail need to be added to the context in order to type e2. This is
also necessary in the pair case, however, since there is only one constructor, there is no
choice of different terms to return. While this may be unusual for case expressions, the
construct serves a purpose nevertheless: accessing a pair’s individual components. The
last case expression for boolean values works like an if-then-else construct; depending on
the first argument either e1 or e2 is returned.
Finally, there is a failure of every type, that can be returned in place of a value if

the computation fails, and an anything of every data type. The restriction of anything
to non-functional types is necessary because Curry does not allow free variables in place
of functions.

To implement the above rules, we begin by introducing an inductively defined proposition,
similar to is_data_type, with an additional argument. Since we want to assign types τ
to expressions e within a context Γ, we use a ternary proposition has_type Γ e τ that
represents the typing relation Γ ` e :: τ used above. Since :: is the cons constructor
in Coq, we will use ::: instead. Another detail is the usage of a Variable to represent
the program. As mentioned earlier, variables are appended to a definition’s type, that is,
has_type has the type program -> context -> tm -> ty -> Prop, although the below
definition is missing the program.

Variable Prog : program.
Reserved Notation "Gamma '|-' t ':::' T" (at level 40).
Inductive has_type : context -> tm -> ty -> Prop :=

| T_Var : forall Gamma x T, (type_con Gamma) x = Some T ->
Gamma |- tvar x ::: T

| T_True : forall Gamma, Gamma |- ttrue ::: TBool
| ...

where "Gamma '|-' t ':::' T" := (has_type Gamma t T).

The first rules reflect the simplicity of the formal counterparts. T_Var looks up a variable’s
type in the type context; the result must be some value T in order for the variable to

22

3.4. Typing

have the type T. Rules like T_True without premises are, apart from the notation, equal
to the corresponding inference rule. Therefore, we will omit these rules.
Supplying arguments to a function is limited to one at a time, that is, we apply a

functional expression e1 :: τ1 → τ2 to the expression e2 :: τ1. Because we supplied e1

with its first argument, the resulting type is the return type of the function that may be
of functional type, since a recursive definition is possible.

T_App : forall Gamma e1 e2 T1 T2,
Gamma |- e1 ::: (TFun T1 T2) -> Gamma |- e2 ::: T1 ->
Gamma |- (tapp e1 e2) ::: T2

The tlet expression has three arguments: an ID that represents the variable bound
to the expression e1 in e2. Because we introduce a new variable x that occurs in
e2, we need to update Γ with the type of e1 bound to x, for instance, the expression
tlet (Id 0) 4 (tadd (tvar (Id 0) 8)) is only typeable if Γ (Id 0) = TNat.

T_Let : forall Gamma e1 e2 x T1 T2,
Gamma |- e1 ::: T1 -> (type_update Gamma x T1) |- e2 ::: T2 ->
Gamma |- (tlet x e1 e2) ::: T2

There are case expressions for bools, lists and pairs. The boolean case works like a
if-then-else construct that returns e1 if e is true and e2 otherwise. Both expressions
must have the same type since the case expression would otherwise have multiple types
depending on the condition. T_CaseP has only one case e1, which is useful to access
the first and second component of a pair by introducing variables, similar to the tlet
expression. The last case expression works with lists and returns e1 if e is the empty list.
In case of a non-empty list, two variables for the list’s head and tail are introduced and
e2 is returned. Since there are no variables in the empty list, this is only necessary for
typing e2.

T_CaseB : forall Gamma e e1 e2 T,
Gamma |- e ::: TBool -> Gamma |- e1 ::: T -> Gamma |- e2 ::: T ->
Gamma |- (tcaseb e e1 e2) ::: T

T_CaseL : forall Gamma e e1 e2 h t T T',
Gamma |- e ::: (TList T') -> Gamma |- e1 ::: T ->
(type_update (type_update Gamma h T') t (TList T')) |- e2 ::: T ->
Gamma |- (tcasel e h t e1 e2) ::: T

Function specialization is the most complex rule since it involves looking up the function’s
declaration in a program and checking the specialized type.

T_Fun : forall Gamma id tys T,
let fd := fromOption default_fd (lookup_func Prog id) in
specialize_func fd tys = Some T ->
Forall (is_data_type Gamma) (fd_to_star_tys fd tys) ->
Gamma |- (tfun id tys) ::: T

The lookup function uses the predefined find that takes a boolean predicate plus a list
and returns an optional of the first (and only since functions are named uniquely) element

23

3. CuMin

that fulfills the predicate or None otherwise. An anonymous function is used to compare
the function’s ID to every entry’s ID until a match is found. Because the search is not
guaranteed to succeed, a value of type option func_decl is returned.
There are two options to handle variables like fd in rules: quantification or let expres-

sions. Via forall quantified variables are easy to work with and allow limited pattern
matching, for instance forall id fd, lookup_func Prog id = Some fd. This defini-
tion ensures that lookup_func succeeds and binds the function declaration to fd, which
saves us from using fromOption to extract the optional value.
The big disadvantage of this solution is the effort and redundancy arising from using

quantified variables: If a variable is not found explicitly in the conclusion of a rule, that
is, Gamma |- e ::: T, it needs to be instantiated manually when applying the rule in
a proof.1 This restriction is especially cumbersome for function applications since the
declaration is already contained in the program but needs to be explicitly supplied any-
way. Because of this limitation, we will use let instead, which is not as comfortable but
makes proofs significantly shorter.

The next step is to specialize the function with specialize_func, that is, replac-
ing the type variables of the function type with the supplied types. The function
specialize_func takes a function declaration plus a list of types and checks if the length
of the list of quantified type variables in the function declaration matches the length of
the provided type list. If both lists have the same length, the substitution begins.

Definition specialize_func (fd : func_decl) (tys : list ty) : option ty :=
match fd with
| (FDecl _ qs t _ _) => if (beq_nat (length qs) (length tys))

then Some (multi_ty_subst (zip qs tys) t)
else None

end.

The substitution multi_ty_subst works as follows: For every pair (∀tαi, τi) the type
variable αi is replaced with τi in the function type τ . The substitution ty_subst is a
recursive function that takes an ID, a replacement type τ and the type τ ′. Basic types
and type variables with a different ID in τ ′ remain unchanged; if the ID of a type variable
matches the provided ID, it is replaced by τ . Because types are nested structures, the
substitution of functions, lists and pairs is recursively applied to the argument types.

Fixpoint ty_subst (k: id) (t: ty) (t': ty) : ty :=
match t' with
| TVar i => if (beq_id i k) then t else TVar i
| TBool => TBool
| TNat => TNat
| TList T => TList (ty_subst k t T)
| TPair TF TS => TPair (ty_subst k t TF) (ty_subst k t TS)
| TFun TA TR => TFun (ty_subst k t TA) (ty_subst k t TR)
end.

1This is actually not completely true, there are automated tactics that are able to infer this information,
as shown in section 3.6.

24

3.4. Typing

Definition multi_ty_subst (qtys : list (quantifier * ty)) (t : ty) : ty :=
fold_right (fun qty t => match qty with

| (for_all id _, ty) => ty_subst id ty t
end)

t qtys.

Technically, the substitution can produce invalid types since variables are replaced, re-
gardless of their tag. While this could be checked by ty_subst, we use a more explicit way
in the last condition of the rule, that is, a Forall construct. We need to check that every
type in tys is a data type if its quantifier has a star-tag. The function fd_to_star_tys
takes a function declaration plus a list of types and returns the types whose matching
quantifiers have a star-tag, for example, [∀εα,∀∗β] and [Int, Bool] would result in the list
[Bool] because only β has a star-tag.
To check the data type property, we use Forall with is_data_type Gamma, that is,

a function ty -> Prop. Every element of the list of ty is applied to the property by
Forall; the returned propositions need to be proven when using this rule.

Exporting Notations Coq does not allow notations in a section, such as used with
has_type, to be exported. While notations in a module can be exported, they do not
have the same semantics regarding variables. Hence, we need to use both in combination
to circumvent this issue. Additionally, notations defined in modules cannot be exported
unless they are part of a scope. Scopes are a list of notations and their interpretations,
which can be named and imported.

Section Typing.
Variable Prog : program.
Reserved Notation "Gamma '|-' t ':::' T" (at level 40).
Inductive has_type : context -> tm -> ty -> Prop :=

| T_Nil : forall Gamma T, Gamma |- (tnil T) ::: (TList T)
| ...

where "Gamma '|-' t ':::' T" := (has_type Gamma t T) : typing_scope.
End Typing.

Module TypingNotation.
Notation "Prog > Gamma '|-' t ':::' T" := (has_type Prog Gamma t T)

(at level 40) : typing_scope.
End TypingNotation.

Import TypingNotation. Open Scope typing_scope.
Section Examples. ...

This combination of sections, modules and scopes works the following way: The module
TypingNotation is outside of has_type’s section and thus, has_type has an additional
program argument. A new notation, similar to the original one with a new program
parameter, is defined, followed by the definition of a typing_scope. The notation can
now be imported and used in other sections or programs.

25

3. CuMin

3.5. Examples

In this section we take a look at some examples that demonstrate the usage of the typing
rules we discussed in the last section. The first example proves that let x = 0 in 1 + x
is a natural number. Since there are no functions in this expression that could potentially
need to be looked up, we use the empty program e_prog. Furthermore, because there
are no external bindings necessary to type the expression, the context is initially empty
too.

Example t3 : e_prog > empty |- (tlet (Id 5) tzero
(tadd (tsucc tzero)

(tvar (Id 5)))) ::: TNat.
Proof.

apply T_Let with (T1 := TNat).
* apply T_Zero.
* apply T_Add.

- apply T_Succ. apply T_Zero.
- apply T_Var. reflexivity.

Qed.

Proofs can be structured using bullet points, which makes it easier to follow the reasoning
in writing. Valid options are: +,−, ∗ or a concatenation of up to 3 of the same symbols
listed. When a rule generates multiple subgoals, every subgoal needs to be marked using
the same bullet point.
The outermost term of the example is a let expression. Therefore, we need to apply the

corresponding rule T_Let. It has quantified variables for both expressions, their types
and the variable ID. As shown in Figure 3.4, all variables can be matched to a part of
the expression, except for T1, that is, the type of e1.

T_Let : forall Gamma x e1 e2 T1 T2,

empty |- (tlet (Id 5) tzero (tadd (tsucc tzero) (tvar (Id 5)))) ::: TNat.

Figure 3.4.: Matching quantified variables with arguments

The application of T_Let requires manually supplied arguments because T1 is not explic-
itly stated in the expression. Since tzero is of type TNat, we can tell Coq to assume the
type of T1 by writing with (T1 := TNat) after the tactic.

______________________________________(1/2)
e_prog > empty |- tzero ::: TNat
______________________________________(2/2)
e_prog > type_update empty (Id 5) TNat |- tadd (tsucc tzero)

(tvar (Id 5)) ::: TNat

The application of T_Let generates two subgoals that we need to prove, that is, show
that 0 and 1 + x have the type TNat. We apply T_Zero, a rule without premises, to

26

3.5. Examples

directly prove the first goal. The remaining subgoal is the addition 1 + x, but compared
to the first subgoal, the context does contain an entry for the variable with the ID 5.
This arises from the definition of the rule: The type we supplied for x and proved to be
correct in the first subgoal is now added to the context in order to use the variable in
the addition, which requires the application of T_Add. Two new subgoals are generated:

______________________________________(1/2)
e_prog > type_update empty (Id 5) TNat |- tsucc tzero ::: TNat
______________________________________(2/2)
e_prog > type_update empty (Id 5) TNat |- tvar (Id 5) ::: TNat

An addition has the type TNat if both summands have, which is expressed by the sub-
goal list. The first subgoal states that S(O) is a TNat. Because the successor of zero is
also a TNat by definition, we apply T_Succ and T_Zero to prove this goal. Lastly, we
need to prove that the variable, which was added to the context, also has the type TNat.
Applying T_Var yields a type lookup of the variable with the ID 5, which results in the
expected type TNat and is therefore proven by applying reflexivity.

The next example demonstrates the application app = (union[Nat] u) v of two variables
to the function union.

union :: ∀∗α.(α→ α→ α)

union x y = case anythingBool of 〈True→ x;False→ y〉

The function union is comparable to Curry’s ? operator, since anythingBool can be either
True or False; the boolean case expression becomes a nondeterministic choice between
both arguments. Now we want to prove that applying two Nat expressions to union,
which has the ID 1, results in a natural number.

Definition app := tapp
(tapp (tfun (Id 1) [TNat])

(tvar (Id 3)))
(tvar (Id 4)).

Definition cntxt := tag_update
(type_update

(type_update empty (Id 3) TNat)
(Id 4) TNat)

(Id 0) tag_star.

We do not consider the source of the variable bindings for Id 3 and Id 4; they are
assumed to be natural numbers bound by a function or let expression. The tag-entry
for Id 0, that is, the type variable in the type of union, is created by parsing the program
initially, which we also do not consider for now.

27

3. CuMin

Example t7 : prog > Gamma |- app ::: TNat.
Proof.
apply T_App with (T1 := TNat). apply T_App with (T1 := TNat).

* apply T_Fun.
- reflexivity.
- apply Forall_cons.

-- apply D_Nat.
-- apply Forall_nil.

* apply T_Var. reflexivity.
* apply T_Var. reflexivity.

Qed.

We begin by applying T_App twice, once for each of the given arguments. In both cases
we need to explicitly supply T1, that is, the type of the argument applied, for the same
reason as in the previous example. The resulting subgoal list has three entries: The
specialization of union (with ID 1 in Coq) needs to match both argument’s types and
the variables must be bound to the correct types in the context.

______________________________________(1/3)
prog > cntxt |- tfun (Id 1) [TNat] ::: TFun TNat (TFun TNat TNat)
______________________________________(2/3)
prog > cntxt |- tvar (Id 3) ::: TNat
______________________________________(3/3)
prog > cntxt |- tvar (Id 4) ::: TNat

The first subgoal is a tfun expression. Therefore, we use T_Fun and get two additional
subgoals to prove, the first of which states that specialize_func applied to union’s
function declaration and TNat must be equal to the arguments supplied. The specialized
type is computed by looking up the declaration in the program, removing the option
from the result and substituting α with TNat in the function type. Since only computable
functions are used, reflexivity solves this goal directly.

______________________________________(1/2)
specialize_func (fromOption default_fd (lookup_func prog (Id 1))) [TNat] =
Some (TFun TNat (TFun TNat TNat))
______________________________________(2/2)
Forall (is_data_type cntxt)
(fd_to_star_tys (fromOption default_fd (lookup_func prog (Id 1))) [TNat])

The second subgoal requires all argument types to be data types if the corresponding
quantifier has a star-tag. Since this applies to α, we need to prove that TNat is a data
type, which is shown by D_Nat. We complete the first ∗-subgoal with Forall_nil and
have two subgoals regarding variables left. Since we assumed these variables to be bound
in the context initially, applying T_Var and reflexivity twice finishes the proof.

28

3.6. Automated Proofs

3.6. Automated Proofs

The examples shown in the previous section have a common structure: They all work
with has_type propositions as well as Forall and can be proven by applying rules of a
inductive definition. A tactic that proves an arbitrary has_type expression would need
to try every rule but would find a match eventually. Unfortunately, this is not sufficient
because we already saw that some variables cannot be instantiated from the supplied
expression and thus require supplying the regarding variables explicitly.

Reconsidering the last example, one may notice the following: It is possible to infer
the missing types of the arguments because the specialized function type contains the
arguments’ types. The usage of apply entails that all variables need to be instantiated
immediately, even if the information may appear later. We need a way to postpone
assigning values to variables until it is necessary – the tactic eapply does precisely that.

______________________________________(1/3)
prog > cntxt |- tfun (Id 1) [TNat] ::: TFun ?T10 (TFun ?T1 TNat)
______________________________________(2/3)
prog > cntxt |- tvar (Id 3) ::: ?T10
______________________________________(3/3)
prog > cntxt |- tvar (Id 4) ::: ?T1

Using eapply replaces unknown values with variables, indicated by a question mark,
without the need for manual input. When we apply T_Fun to solve the first subgoal,
the type TFun ?T10 (TFun ?T1 TNat) is matched with TFun TNat (TFun TNat TNat),
that is, the specialized function type. Consequently, all occurrences of ?T1 and ?T10 are
replaced by TNat; the necessary information was inferred automatically.

The tactic constructor tests every constructor of an inductive type, which works for
inductively defined propositions. Considering the above proof, we used reflexivity to
evaluate specialize_func and to prove the equation. At first glance, one may ques-
tion why constructor is able to use reflexivity if it works by trying constructors.
The answer is found in the Coq reference manual[The Coq Development Team, 2016]:
reflexivity is equivalent to apply refl_equal.

> Print refl_equal.
Notation refl_equal := @eq_refl
> Print eq_refl.
Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : x = x

Coq tells us that eq_refl is a constructor of the inductive definition eq, which is a nota-
tion for the equality sign. Thus, reflexivity is actually the application of a constructor
and can be tried by constructor.

To automate the entire proof, we need to combine both ideas: a tactic that tries every
rule and replaces unknown values with variables until they are known: econstructor.
This is not just a combination of ’e’ and constructor but an existing, powerful tactic. It

29

3. CuMin

is possible to prove the example by using econstructor eleven times, but luckily there
is the tactic repeat t that applies the supplied tactic t to every subgoal and recursively
to every additional generated subgoal until it fails or there is no more progress.

Example t7a : prog > cntxt |- app1 ::: TNat.
Proof.

repeat econstructor.
Qed.

This results in a fully automated, single-line proof and shows a small part of the powerful
tactics Coq offers.

Summarizing this chapter, we began by transferring the formal definition of CuMin’s
syntax to Coq, followed by the definition of a context that contains variable bindings and
tag information to enable typing of expressions. We used inductively defined propositions
to describe data types and created a proposition that maps expressions to types with
respect to a context. In the final sections we proved some examples and had a more
detailed look at how proofs in Coq work and how they can be automated.

30

4. FlatCurry

FlatCurry1 is an intermediate representation of Curry code that is used by compilers like
KiCS2 and enables meta-programming, that is, the transformation of Curry programs
in Curry. Since we want to reason about Curry programs in Coq, the respective mod-
ule FlatCurry.Types will be the foundation of the Coq implementation. Generating
FlatCurry code involves two transformations. Firstly, lambda lifting is applied, that is,
local function definitions, for example introduced by where or let clauses, are replaced
by top-level definitions.

addTwo n = addOne (addOne n)
where addOne m = m + 1

addTwo n = addTwo.addOne (addTwo.addOne n)
addTwo.addOne m = m + 1

Secondly, pattern matching is substituted by case and or expressions, the latter in case
of overlapping patterns. We already discussed this transformation in section 2.2.

In this chapter we pursue the same approach used with CuMin, that is, implementing
FlatCurry’s syntax, a context and typing rules. Some aspects of the FlatCurry im-
plementation are similar to CuMin and therefore will not be described as detailed as
before, instead we discuss additional possibilities like automatically creating and parsing
FlatCurry programs.

4.1. Syntax

The syntax we use in Coq is similar to the Curry code2 and thus, we discuss the Coq
implementation only. Generally, Curry allows data types and constructors to have iden-
tical names, which is not possible in Coq; likewise Type is a reserved keyword, as we have
seen multiple times. Thus, these limitations need to be considered when transforming
the syntax.
There are three type synonyms that identify variables and other named entities, for
example functions:

• VarIndex: Variables in expressions are represented by a nat.

• TVarIndex: Type variables in type expressions are also represented by a nat but
have a different name. The distinction between the two variable types is useful to
prevent mistakes.

1https://www.informatik.uni-kiel.de/ curry/flat/
2https://www-ps.informatik.uni-kiel.de/kics2/lib/FlatCurry.Types.html

31

4. FlatCurry

• QName: A qualified name is a pair of strings: the module name and the name of the
function, data type, etc. Thus, the same name can occur in multiple modules and
still be uniquely addressable.

We discuss the relevant elements of the FlatCurry syntax in a top-down approach, be-
ginning with a program. Besides its name, a program contains a list of imports and lists
for type, function and operator declarations. Imports need to be handled manually when
working with multiple modules in this implementation.

Inductive TProg : Type :=
| Prog : string -> list string ->

list TypeDecl -> list FuncDecl -> list OpDecl -> TProg.

Types in FlatCurry are more abstract compared to CuMin, but there are similar elements:
Type variables and function types are similar to CuMin, except the index of variable is
a TVarIndex instead of an ID. We do not distinguish types and data types, as we did
before. Thus, there is no need for an is_data_type property or a context that maps
types to tags.

Inductive TypeExpr : Type :=
| TVar : TVarIndex -> TypeExpr
| FuncType : TypeExpr -> TypeExpr -> TypeExpr
| TCons : QName -> list TypeExpr -> TypeExpr.

The big difference is the absence of explicit types, for example Nat or Bool. Every non-
functional type is represented by a TCons construct, which consists of a qualified name
and a list of types. The latter contains type parameters, for example, the expression
Left 42 has the type Either Int a, which is represented in FlatCurry by the qualified
name ("Prelude", "Either") and a list containing Int as well as a type variable TVar
x. Base types like Int do not have type parameters, as shown in the example below.

(TCons ("Prelude","Either") [(TCons ("Prelude","Int") []), (TVar 0)])

The next construct are declarations of functions, types and constructors. They are
identified by qualified names and have a visibility, which determines if the declaration
is visible when the module is imported in another program. A function’s arity, that is,
the number of arguments, is represented by a natural number; this information is useful
when working with partial function applications. It is followed by the function’s type,
represented by a TypeExpr. Lastly, rules encapsulate a list of variables and an expression,
which is similar to CuMin’s syntax.

Inductive FuncDecl : Type :=
| Func : QName -> nat -> Visibility -> TypeExpr -> TRule -> FuncDecl.

Inductive TypeDecl : Type :=
| Typec : QName -> Visibility -> list TVarIndex -> list ConsDecl -> TypeDecl
| TypeSyn : QName -> Visibility -> list TVarIndex -> TypeExpr -> TypeDecl.

Inductive ConsDecl : Type :=
| Cons : QName -> nat -> Visibility -> list TypeExpr -> ConsDecl.

32

4.1. Syntax

Type declarations are a new construct since CuMin does not have user-defined data
types. There are two constructors: type synonyms, for example type IntL = [Int],
and a constructor to create new types. While both have a list of type variables, TypeSyn
has a type expression and Typec a list of constructor declarations. The following example
shows the FlatCurry representation of binary trees in Curry, that is, a data type BTree
with two constructors: a Leaf without further arguments and a Branch with a decoration
of some type as well as two binary trees.

Typec ("MyProg","BTree") Public [0]
[(Cons ("MyProg","Leaf") 0 Public []),
(Cons ("MyProg","Branch") 3 Public

[(TVar 0),
(TCons ("MyProg","BTree") [(TVar 0)]),
(TCons ("MyProg","BTree") [(TVar 0)])])]

The definition of binary trees has a type variable with the index 0, which is used in place
of the decoration’s type and supplied to the subtrees in order to allow polymorphism.

FlatCurry expressions share some common elements with the CuMin definition: There are
expressions for variables and literals, let and case constructs, the application of functions
and a way to express nondeterminism. Nevertheless, most expressions are more abstract
and require more complex typing rules than in CuMin, for example, there is only one
generic case expression instead of a specific definition for every type.

Inductive Expr : Type :=
| Var : VarIndex -> Expr
| Lit : Literal -> Expr
| Comb : CombType -> QName -> list Expr -> Expr
| Let : list (prod VarIndex Expr) -> Expr -> Expr
| Free : list VarIndex -> Expr -> Expr
| Or : Expr -> Expr -> Expr
| Case : CaseType -> Expr -> list BranchExpr -> Expr
| Typed : Expr -> TypeExpr -> Expr

Literals Integers, characters or floating point numbers are literals. While there is a
nat type in Coq, the other types cannot be represented that easily. The module Ascii
contains data structures and notations for characters, but it is not possible to use escaped
symbols like \n without converting them to a decimal, three digit representation, in this
case 010. Similarly, the module Reals can represent floats, but the dot notation that
FlatCurry uses (for example 1.2) is not available, instead numbers need to be written as
fractions. Because we are mainly interested in typing expressions, we avoid this problem
by using strings to represent chars and floats. That is not to say that an accurate
representation is not feasible, but rather that it adds few value in the context of typing
expressions.

Function application Comb represents the application of functions and constructors. Its
first argument is a CombType, which is either a function/constructor call with all argu-

33

4. FlatCurry

ments supplied (FuncCall/ConsCall) or a partial call (FuncPartCall/ConsPartCall).
The latter has an integer value that is the number of missing arguments. The other
arguments of Comb are a qualified name of a function or constructor as well as a list of
expressions, that the function is applied to.

Comb FuncCall ("Prelude","map")
[(Comb (FuncPartCall 1) ("MyProg","double") []),
(Comb ConsCall ("Prelude",":") [(Lit (Intc 1)),

(Comb ConsCall ("Prelude","[]") [])])]

The application of map to double and [1] results in a full function call of map since all
arguments have been supplied. Because double is missing its argument, the function call
is partial with one argument remaining. The list [1] is represented by the application of
cons to the integer literal 1 and the empty list, which is a constructor without arguments.

Let Expression While CuMin allows only one binding in a let expression, this limita-
tion is not present in FlatCurry. Multiple bindings are represented by a list of (VarIndex,
Expr) pairs that bind a variable to an expression. The last argument of a let expression
is the term that the bindings occur in. The following example shows the expression
let x = y + 1, y = z + 2, z = 3 in x+ y in FlatCurry syntax.

Let [(1,(Comb FuncCall ("Prelude","+") [(Lit (Intc 3)), (Lit (Intc 2))])),
(2,(Comb FuncCall ("Prelude","+") [(Var 1),(Lit (Intc 1))]))]

(Comb FuncCall ("Prelude","+") [(Var 2),(Var 1)])

FlatCurry replaces unnecessary variables like z with its value. Bindings are sorted hier-
archically, that is, if a variable occurs in another binding, its position in the list is ahead
of the binding that references the variable.

Case Expression There are two instances that result in a case expression in FlatCurry:
explicit case expressions and pattern matching, for example in functions. The CaseType
is either rigid, in case of an explicit case, or flexible, for transformed pattern match-
ing. It modifies the evaluation strategy of free variables in the case expression; flexible
cases use narrowing while rigid cases are evaluated by residuation, as we discussed in
section 2.2. Because the evaluation strategy does not affect the result’s type, we do not
need to distinguish both cases.
The two remaining arguments are the expression that determines the branch to be

taken and a list of BranchExpr, which consist of a pattern and an expression. Patterns
may be literals or a constructor and a list of variables, as shown in the following example.
The original function fromMaybe is transformed to a case expression in order to eliminate
pattern matching.

fromMaybe :: a -> Maybe a -> a
fromMaybe _ (Just x) = x
fromMaybe d Nothing = d

fromMaybeCase :: a -> Maybe a -> a
fromMaybeCase d m = case m of

Just x -> x
Nothing -> d

34

4.2. Context

Case Flex (Var 2) [(Branch (Pattern ("Prelude","Just") [3])(Var 3)),
(Branch (Pattern ("Prelude","Nothing") [])(Var 1))]

The resulting FlatCurry code looks nearly identical for both definitions, only the CaseType
differs because fromMaybeCase is an explicit case expression instead of a transformation.
Unlike CuMin’s case, this definition can be used with every type. Hence, typing a case
expression is more complex in FlatCurry.

The remaining expressions are simple: Free has a list of variables indexes that represent
free variables, which can be used in the supplied expression in place of variables or
values. Or represents the nondeterministic choice between two expressions, similar to
the ? operator. Lastly, Typed explicitly assigns a type to an expression, for example
2 :: Int.

4.2. Context

The context we use for typing FlatCurry contains the familiar partial map from VarIndex
to TypeExpr but is missing the tag map since we do not have data types anymore. In
addition to the information about variables, the context contains function and construc-
tor declarations in form of two partial maps that map a qualified name to a pair of the
full type and a list of type variables, for example, Just has the entry (a→ Maybe a, [a]).
The list of type variables simplifies specializing a function because every type variable
needs to be substituted with a concrete type. To work with contexts there are selectors
vCon, fCon and cCon to access the respective variable, function or constructor context
and update functions to add values, similar to the CuMin context.

We want to be able to work with possibly large Curry programs. Hence, we need to create
a parser that extracts the required information from a FlatCurry program and adds it
to a context. Parsing function declarations is simple because a declaration contains the
function’s type explicitly and we only need to extract the type variables.

Fixpoint extractTVars (t : TypeExpr) : list TVarIndex :=
match t with
| TVar i => [i]
| TCons _ tys => concat (map extractTVars tys)
| FuncType argT retT => (extractTVars argT) ++ (extractTVars retT)
end.

extractTVars works by recursively concatenating the indexes of a type expression. Be-
cause the function lists every occurrence of a type variable, the result needs to be dedupli-
cated. Together with the function type, the list of type variables is added to the context
by the function addFunc. To add a list of function declarations to the same context,
parseFuncs uses fold_right.

Definition parseFuncs Gamma (fdecls : list FuncDecl) : context :=
fold_right (fun f c => addFunc c f) Gamma fdecls.

35

4. FlatCurry

Parsing a constructor declaration is more complicated because the type is not as easily
accessible. Additionally, the declarations are contained in a type declaration and we need
to incorporate this information in the constructor’s type. We begin by parsing the list
of constructor declarations and pass the data type as an additional parameter to the
processing functions, for example Maybe a for the declaration of Just. Unfortunately
the type parameters of a constructor are stored as a list, therefore we need a function
that transforms a list of types to a function type, for example [Int, Bool, Int] to
Int → Bool → Int.

Fixpoint tyListFunc (tys : list TypeExpr) : TypeExpr :=
match tys with
| [t] => t
| t :: ts => FuncType t (tyListFunc ts)
| [] => TCons ("Coq","NoType") []
end.

The function tyListFunc recursively creates function types by adding the supplied types
until the list contains only one type, which is the return type of the function. In case of an
empty list we need a default type because Coq enforces exhaustive pattern matching, even
though this situation cannot occur normally because the type of a constructor contains
a least the data type, for example Nothing :: Maybe a. Now we can use tyListFunc to
assemble the full type of a constructor.

tyListFunc (args ++ [TCons tqn (map TVar vis)])

The information obtained from the type declaration is the qualified name tqn and type
variables vis. By constructing a TypeExpr with TCons and concatenating it to the list
of type variables args of the constructor, we get the full type by applying tyListFunc
to it.

tyListFunc ([TVar 0] ++ [TCons ("Prelude", "Maybe") (map TVar [0])])

In case of Just this results in the type a → Maybe a, which is added to the context
together with the list of type variables of the data type. This procedure is applied to
every constructor declaration and, together with the parsed function declarations, results
in a context that contains the full type and a list of type variables for every function and
constructor.

4.3. Typing

The FlatCurry typing rules expand concepts we discussed in the previous chapter. Func-
tions can be applied to multiple arguments at the same time, there are user-defined data
types, generic case expressions and let expressions with multiple bindings. This results
in more complex typing rules because conditions need to hold for multiple elements,
instead of one, and are not restricted to a specific data type.
We begin by defining names for common types, for example Int, Char and Float,

which are represented by a type constructor call TCons ("Prelude", "Int") [] for the

36

4.3. Typing

respective type. In the following rules the same syntax Γ ` e :: τ is used as before to
express that in a context Γ the expression e has the type τ . We will discuss the different
inference rules and, if not easily transferable, the FlatCurry implementation of the rule.

Literals and Variables FlatCurry does have fewer literals than CuMin, all of which
are contained in the Lit expression. Therefore, the type of a literal depends on the
constructor of its argument.

Γ ` Lit (Intc i) :: Int Γ ` Lit (Floatc f) :: Float Γ ` Lit (Charc c) :: Char

Γ, x 7→ τ ` x :: τ

Figure 4.1.: Typing rules for literals and variables

The other literals we defined explicitly in CuMin are replaced by TCons constructs, for ex-
ample, TCons ("Prelude", "[]") [] represents the empty list. Typing variables works
as before: If the context Γ has an entry for a variable, its type is the value returned by Γ.

Function Application Applying a function f to n arguments e1 . . . en with types τ1 . . . τn
requires the types to match the argument types in the function type returned by the
context. Looking up the function f , denoted by curly brackets, yields the pair (τ1 →
· · · → τn → τ, xk) where the first component is the type of f and the second is a list of
type variables, as defined in section 4.2.

Γ ` e1 :: τ1[xk 7→ tk] . . . Γ ` en :: τn[xk 7→ tk]

Γ, {f 7→ (τ1 → · · · → τn → τ, xk)} ` f e1 . . . en :: τ [xk 7→ tk]

Figure 4.2.: Typing rule for function applications

The notation [xk 7→ tk] represents a type substitution of the type variable xi with the
type ti. The types ti need to be supplied explicitly, because there is no type inference.
For instance, the application app = map IntToChar [1,2,3] with an arbitrary function
IntToChar :: (Int → Char) would result in the typing rule below.

Γ ` IntToChar :: (a→ b)[a 7→ t1, b 7→ t2] Γ ` [1, 2, 3] :: [a][a 7→ t1, b 7→ t2]

Γ, {map 7→ ((a→ b)→ [a]→ [b], [a, b])} ` app :: [b][a 7→ t1, b 7→ t2]

Figure 4.3.: Typing rule for map IntToChar [1,2,3]

In this example the xi are a and b, as returned by looking up map in the context. The
type information obtained from the context is divided into the types of the respective
arguments. Since these types can still contain type variables, the substitution types t1
and t2 need to be instantiated appropriately, in this case with Int and Char, in order to
satisfy the premises of the rule.

37

4. FlatCurry

Similar to CuMin, we use the inductively defined proposition hasType to describe typing
rules. The respective types are adapted to reflect the FlatCurry syntax, but apart from
this change, the proposition works the same. The implementation of function applications
is shown below.

Inductive hasType : context -> Expr -> TypeExpr -> Prop :=
T_Comb : forall Gamma qname exprs cType substTypes T,

let funcT := fromOption failType ((combCon cType Gamma) qname) in
let specT := multiTypeSubst (snd funcT) substTypes (fst funcT)
in funcPart specT None = T ->

Forall2 (hasType Gamma) exprs (fst (funcTyList specT)) ->
Gamma |- (Comb cType qname exprs) ::: T

The rule T_Comb can type full function and constructor applications since the only dif-
ference is the context that the function or constructor is looked up in, which is decided
by combCon depending on the supplied combType. The result is funcT, a pair of the
function’s type and type variables.
Next, the variable substTypes (the specialization types supplied by the user) is used

to replace the type variables in the function type with multiTypeSubst, which yields the
specialized type specT the same way the function works in the CuMin implementation.
Now we need to determine the type T of the function application, which is computed

by funcPart. It takes a function type plus an optional number and yields the return
type of the function if no number is supplied. Otherwise funcPart removes the first n
types of the function, for example funcPart (Some 2) (a -> b -> c) yields c. This is
useful for computing the type of partial applications, but in this case we need only the
return type, since all arguments are supplied.
The last premise checks that the expressions have the type of the respective part of the

specialized function part by transforming the specialized type into a list of types, minus
the return type that is contained in the second part of the pair funcTyList returns.
Forall2 checks if the i-th element of the expression list has the i-th type of the type list,
which represents the conditions of the inference rule in Figure 4.2.

Partial Function Application The partial application of a n-ary function f to k ar-
guments works similar to the full application. The type of f returned by Γ is divided
into two parts: The first k types are checked against the argument’s types and the last
n+ 1− k types represent the new type of f .

Γ ` e1 :: τ1[xi 7→ ti] . . . Γ ` ek :: τk[xi 7→ ti]
with k < n

Γ, F ` f e1 . . . ek :: (τk+1 → · · · → τn → τ)[xi 7→ ti]

with F = {f 7→ (τ1 → · · · → τk → τk+1 → · · · → τn → τ, xi)}

Figure 4.4.: Typing rule for partial function applications

The substitution types ti need to be specified only for type variables that occur in the

38

4.3. Typing

supplied arguments, for example, a function f :: a → a → b applied to the number 4
would require the substitution [a 7→ Int, b 7→ b] because we do not want to specialize
types of arguments that have not been applied yet.
T_Comb_Part: forall Gamma qname exprs substTypes cType T,

let funcT := fromOption failType ((combCon cType Gamma) qname) in
let specT := multiTypeSubst (snd funcT) substTypes (fst funcT) in
let k := funcArgCnt (fst funcT) - (partCombArgs cType) in
let argTs := firstn (@length Expr exprs) (fst (funcTyList specT))
in funcPart specT (Some k) = T ->

Forall2 (hasType Gamma) exprs argTs ->
Gamma |- (Comb cType qname exprs) ::: T

Similarly to the implementation of the full application, we begin with looking up the
function type in the context and specializing it with the supplied types. As mentioned
above, it is technically necessary to supply type variables in substTypes for every type
variable of the function, however, multiTypeSubst works by using zip to pair the sub-
stitute types and type variables. If zip is applied to lists of different size, the longer list’s
tail is discarded, which is, in this case, the list of type variables that we do not want to
replace.
To compute the new type of f , we need to consider the number of remaining arguments

supplied in the partial function call. The function funcArgCnt yields the number of
arguments a function type has, of which we subtract partCombArgs cType, that is, the
number of remaining arguments contained in the combType. This results in the number k
of arguments applied to the function. We previously used funcPart with None to obtain
the return type of a function, now we use it with Some k. This removes the first k types,
that is, the arguments that were supplied to the function, and yields the new type of f .
Lastly, we check that the argument’s types match the types of the specialized function

type. Only the first k types are relevant and thus, we use firstn to discard the other
types and use Forall2 with the result and the supplied arguments.

Let Expression Typing let expressions differs, compared to CuMin, in the arbitrary
number of bindings allowed. A variable x can occur in other bindings (y = x + 1) or
even its own, for example in infinite lists (x = [2] ++ x). As a consequence, context
entries for the variables x1 . . . xn are required in order to type the expressions e1 . . . en
and e.

Γ, x1 7→ τ1, . . . , xn 7→ τn ` e1 :: τ1 . . . Γ, x1 7→ τ1, . . . , xn 7→ τn ` en :: τn
Γ, x1 7→ τ1, . . . , xn 7→ τn ` e :: τ

with n > 0
Γ ` let x1 = e1, . . . , xn = en in e :: τ

Figure 4.5.: Typing rule for let expressions

While it is syntactically valid to write let expressions without bindings, for example one
= let in 1, we require at least one binding because such an occurrence is replaced by
its value in FlatCurry.

39

4. FlatCurry

T_Let : forall Gamma ve ves tyExprs e T,
let vExprs := (ve :: ves) in
let exprs := map snd vExprs in
let vTys := replaceSnd vExprs tyexprs in
let Delta := multiTypeUpdate Gamma vTys
in Forall2 (hasType Delta) exprs tyExprs ->

Delta |- e ::: T ->
Gamma |- (Let (ve :: ves) e) ::: T

We use pattern matching to verify that the list of bindings vexrps, that is, pairs of
variables and expressions, is not empty. It is possible to use length vexrps > 0 instead,
but pattern matching has two advantages: The rule fails directly when applied to an
empty list and, if this is not the case, the proof is shorter because we do not need to
prove the inequality.
The variable tyExprs is explicitly supplied and represents the types of the expressions

used in the bindings. The function replaceSnd takes a list of pairs plus another list and
replaces the second component of every pair with the corresponding item in the list; in
this context we replace expressions with types, resulting in pairs of variables and types,
which we can use to create an updated context ∆ with multiTypeUpdate. Lastly, we
check the types of the expressions used in the bindings with Forall2 and use the updated
context to type e.

Case Expression FlatCurry has one generic case expression compared to CuMin’s spe-
cific versions for every type, which results in the most complex rule so far. The expression
e can have any type with an arbitrary number of constructors, all of which need to be
looked up in the context and specialized with the supplied types, followed by updating
the context with new variables.

Γ, xi 7→ τ1i [vj 7→ tj] ` e1 :: τ ′ . . . Γ, xi 7→ τki [vj 7→ tj] ` ek :: τ ′

Γ ` e :: τ [vj 7→ tj]
with k > 0

Γ, Cs ` (f)case e of {C1 x1 . . . xn → e1; . . . ;Ck x1 . . . xm → ek} :: τ ′

with Cs = {C1 7→ (τ11 → · · · → τ1n → τ, vi), . . . , Ck 7→ (τk1
→ · · · → τkm

→ τ, vi)}

Figure 4.6.: Typing rule for case expressions

Because every branch expression needs a context containing the variables of its con-
structor, there are two options: either every expression is typed in its own context that
contains only the relevant variable entries, or all variables are added to the same context
that then can type every expression. The latter option is used here because, even if
variables are named the same in a Curry program, FlatCurry uses unique variable names
and therefore, there is no risk of a name clash. Unfortunately, the result of this approach
is the rather obscure formal representation with twice overlined expressions.

40

4.3. Typing

T_Case : forall Gamma ctype e substTypes T Tc p vis brExprs',
let brExprs := Branch p vis :: brExprs' in
let patPs := map pattSplit (brExprsToPatterns brExprs) in
let consTvis := map (compose (fromOption defaultTyVars) (cCon Gamma))

(map fst patPs) in
let tvis := snd (fromOption defaultTyVars

(cCon Gamma (fst (pattSplit p)))) in
let specTs := map (multiTypeSubst tvis substTypes)

(map fst consTyVis) in
let visTys := zip (map snd patPs)

(map (compose fst funcTyList) specTs) in
let Delta := multiListTypeUpdate Gamma visTys
in Forall (flip (hasType Delta) T) (brExprsToExprs brExprs) ->

Forall (fun ty => ty = Tc) (map ((flip funcPart) None) specTs) ->
Gamma |- e ::: Tc ->

Gamma |- (Case ctype e (Branch p vis :: brExprs')) ::: T

Again, we use pattern matching to ensure that the case expression has a least one branch
because, unlike let, the expression would otherwise not be typeable. The implementation
might not be clear at first sight. Therefore, the example below, that is, a function
that retrieves the value of a Maybe or returns a default value, is used to illustrate the
computation.

fromMaybeCase d m = case m of
Just x -> x
Nothing -> d

example = fromMaybeCase 0 (Just 2)

We begin with a list of branch expressions brExprs, that is, a pattern and an expression.
Var 3 represents the variable introduced in the Just pattern and Var 1 is the default
value d.
[(Branch (Pattern ("Prelude","Just") [3])(Var 3));
(Branch (Pattern ("Prelude","Nothing") [])(Var 1))]

The function pattSplit takes a pattern and yields a pair of the qualified name of the
constructor and its variables. Applied to the list of patterns, which is returned by
brexprsToPatterns, it returns the list patPs of (QName, [TVarIndex]) pairs.
[("Prelude", "Just", [3]); ("Prelude", "Nothing", [])]

By composing fromOption and cCon, we have a function that is applied to every qualified
name, that is, constructor name, yielding the list consTvis of types and type variable
pairs.
[(FuncType (TVar 0) (TCons ("test", "Maybe") [TVar 0]), [0]);

(TCons ("test", "Maybe") [TVar 0], [0])]

The type variables are equal for every constructor since they return the same type. To
avoid using head and its default element, we use additional pattern matching in the last
line to obtain the first pattern and apply the previous procedure again, yielding the list
of type variables tvis = [0] that need to be specialized. This type specialization is
applied to every constructor type, which is represented by the list specTs.

41

4. FlatCurry

[FuncType Int (TCons ("test", "Maybe") [Int]);
TCons ("test", "Maybe") [Int]]

The second component we need in the premises later is visTys, a list of pairs that assigns
all variables used in constructors their type, according to the specialized types.

[([3], [Int]); ([], [])]

The pairs represent Just with its variable x and Nothing without variables. Lastly,
visTys is added to the context by using multiListTypeUpdate. The function takes a
list of pairs of lists, that is, a list that contains pairs that contain lists of variables and
the corresponding types for every constructor, and adds them to the context.
Now, the computational part of the rule is finished and we can begin to check the

premises. The first Forall proposition checks if all branch expressions have the same
type T. In this case we would need to check if 0 and 2 are integers, which is obviously true.
The next Forall proposition checks if the specialized data type Tc of all constructors
matches the case expression’s type, that is, Maybe Int, which is also true. Therefore,
the case expression has the type Tc.

Or, Free and Typed The typing rules for or and free expressions are short:

• The or expression requires both expressions to have the same type τ , so that the
result’s type is coherent.

• When introducing free variables x1 . . . xn in an expression e, the types τ1 . . . τn need
to be added to the context on order to type e.

Γ ` e1 :: τ Γ ` e2 :: τ
a

Γ ` e1 or e2 :: τ

Γ, x1 7→ τ1, . . . , xn 7→ τn ` e :: τ
b

Γ ` let x1, . . . , xn free in e :: τ
Γ ` e :: T T ⇒ τ c

Γ ` (e ::: τ) :: τ

Figure 4.7.: Typing rules for (a) or, (b) free and (c) typed expressions

Typed expressions require that the (polymorphic) type T of the expression e can be
specialized to the stated type τ , that is, ∃t1 . . . tn : T [xi 7→ ti] = τ where x1 . . . xn
are type variables in T , notated as T ⇒ τ . This requirement is necessary because
polymorphic functions, such as id :: a → a, can be typed to a more specific type, for
example intId = id :: Int → Int.
The Coq equivalent of T ⇒ τ is an inductively defined proposition isSpecializableTo

that takes two type expressions and can be used to prove that T is specializable to τ .

Reserved Notation "T '==>' t" (at level 40).
Inductive isSpecializableTo : TypeExpr -> TypeExpr -> Prop :=

| T_Eq : forall T, T ==> T
| T_Spec : forall t T substTypes,

multiTypeSubst (funcTVars T) substTypes T = t ->
T ==> t

where "T '==>' t" := (isSpecializableTo T t).

42

4.4. Transformation of FlatCurry into Coq

T_Eq states that any type can be "specialized" to itself, which is useful for expressions
like (42 :: Int), where no specialization is necessary. If we want to prove that a type
T can be specialized to τ , we need to substitute all type variables in T with explicitly
supplied types and the result must be equal to τ .

4.4. Transformation of FlatCurry into Coq

Reasoning about Curry programs in Coq requires a way to transform a .curry file into the
data structure discussed in section 4.1. The module FlatCurry.Files provides functions
to read and transform Curry files, which can be viewed in FlatCurry syntax by using
the showFlatProg function of the FlatCurry.Show module. We modeled the syntax in
Coq deliberately as similar as possible to the original syntax to minimize the conversion
effort necessary. The differences we need to address are:

• Type declarations use the constructor Type, which is a keyword in Coq.

• Floating point number and character notations are not available or different.

• The double quote character needs to be escaped because characters are enclosed in
double quotes themselves.

• List elements are separated by semicolons instead of commas.

To accomplish the above conversion one may come up with the idea of parsing the
FlatCurry string directly, which requires counting brackets to distinguish list from pair
separators and replacing certain substrings and characters in a large case expression.
While this is a viable way of achieving the goal, it is neither an easy maintainable nor
very elegant solution.
A better approach works with the FlatCurry data structure and a modified version

of Show. Most functions in the module work by building the FlatCurry structure from
string snippets and values like names and numbers. The modified functions are denoted
by an appended "Coq"; we will take a look at the relevant excerpts.

showFlatTypeCoq :: TypeDecl -> String
showFlatTypeCoq (Type name vis tpars consdecls) =

"\n (Typec " ++ show name ++ showFlatVisibility vis
++ showFlatList show tpars
++ showFlatList showFlatCons consdecls ++ ")"

The function showFlatTypeCoq returns the string representation of a type declaration by
using either show directly or an additional formatting function to transform the values
into strings, which are then concatenated and prefixed by a newline and the constructor
name. To prevent Coq from mistaking the constructor for a keyword, we use "Typec"
instead of "Type".
Literals are prefixed by the respective constructor and use show to create the string

representing the value. In case of floats, it is sufficient to enclose the value in double
quotes since we treat them as strings.

43

4. FlatCurry

showFlatLit (Floatc f) = "(Floatc \"" ++ show f ++ "\")"
showFlatLit (Charc c) = "(Charc \"" ++ escQuote (filter (/='\'') (show c))

++ "\")"

Characters require slightly more effort: show returns a string, for example ’a’, that
contains single quotes, which we remove by filtering out other characters only. Since
Curry denotes strings with single quotes, a string can contain unescaped double quotes.
Furthermore, we use the function escQuote to escape double quotes by adding another
double quote to it.

showFlatListElems :: (a->String) -> [a] -> String
showFlatListElems format elems = concat (intersperse ";" (map format elems))

The first argument of showFlatListElems is a formatting function that prints a specific
structure. Thus, showFlatListElems can transform arbitrary lists to strings by mapping
the formatting function over it, interspersing a separator and concatenating the resulting
list. In accordance with Coq’s list notations, we separate the list’s elements with semi-
colons instead of commas.

The above modifications allow us to write a Curry program that transforms .curry files
to Coq files. The function showFlatCoq is called with a file path s and returns an IO
action that prints the transformed program.

showFlatCoq :: String -> IO ()
showFlatCoq s = do flatProg <- readFlatCurry s

let (Prog modname _ _ _ _) = flatProg
flatProgS = showFlatProgCoq flatProg
coqProg = headerString ++ importString

++ defString modname ++ flatProgS
++ ['.','\n']

in putStr coqProg

The supplied file is parsed by readFlatCurry, which results in a Prog, that is, the Curry
data structure representing a FlatCurry program. We use a let expression to obtain the
program name and apply the modified showFlatProgCoq function to flatProg. Then,
the flat program string is concatenated with a header and import string. The imports
required are the Coq definition of FlatCurry and Lists.List, that is, a module contain-
ing list notations. As usual, the program needs a definition and subsequently a name.
Thus, we use defString with the modname we got earlier; the result is a string of the
form Definition modname_coq :=. Together with the actual program and a concluding
dot, we have all parts of the finished Coq program that can now be imported in other
programs, as shown in Appendix A.

4.5. Examples

In the previous sections we have discussed the FlatCurry syntax, context and typing
rules. Additionally, we created a program that transforms Curry programs into a Coq
representation; now we take a look at some examples.

44

4.5. Examples

double :: Int -> Int
double x = x + x

example1 :: [Int] -> [Int]
example1 = map double

example2 :: Bool -> Bool
example2 = id :: (Bool -> Bool)

example3 :: Int
example3 = case x of

Just n -> n
Nothing -> 0

where x free

The first example is the partial application of map to double. Since double has the type
Int → Int, both type variables of map are specialized to Int in the resulting type. The
second example shows explicit typing of the polymorphic identity function and the last
example is a case expression with a free variable.
Using the transformation introduced in section 4.4 yields the following definition:

Definition MyProg_coq := (Prog "MyProg"
["Prelude"] (* imported modules *)
[] (* data type declarations *)
[(* function declarations *)

(* qualified name, arity and visibility *)
(Func ("MyProg","double") 1 Public

(* full type *)
(FuncType Int Int)
(* variable list and expression *)
(Rule [1] (Comb FuncCall ("Prelude","+") [(Var 1);(Var 1)])));

(Func ("MyProg","example1") 0 Public
(FuncType (List Int) (List Int))
(Rule [] (Comb (FuncPartCall 1) ("Prelude","map") [(Comb (FuncPartCall 1)
("MyProg","double") [])])));

(Func ("MyProg","example2") 0 Public
(FuncType Bool Bool)
(Rule [] (Typed (Comb (FuncPartCall 1) ("Prelude","id") [])
(FuncType Bool Bool))));

(Func ("MyProg","example3") 0 Public
Int
(Rule [] (Free [1] (Case Rigid (Var 1)

[(Branch (Pattern ("Prelude","Just") [2])(Var 2));
(Branch (Pattern ("Prelude","Nothing") [])(Lit (Intc 0)))]))))

]
[] (* operator declarations *)
).
Definition cntxt := parseProgram MyProg_coq.

The context is created by applying parseProgram to the program definition, as shown
in section 4.2. In the following proofs exp variables represent the expression of the re-
spective example, that is, the term that is contained in the Rule. Unfortunately, the
usage of let expressions in the definition of hasType’s rules creates large, flat terms that
contribute few to the explanation. Therefore, we will discuss proofs in a more abstract
manner.

45

4. FlatCurry

The proof for example1 contains two applications of the rule T_Comb_Part: The first is
the application of map to double, the second double itself, even though no arguments are
supplied. A function application without arguments yields the original function and is
necessary to supply functional arguments to higher-order functions. T_Comb_Part creates
two subgoals when applied: Specializing the function type with the supplied substTypes
needs to match the type supplied in the proposition. The second subgoal requires the
arguments to have the corresponding types of the specialized function type.

Definition example1 : cntxt |- exp1 ::: (FuncType (List Int) (List Int)).
Proof.

apply T_Comb_Part with (substTypes := [Int; Int]).
* reflexivity.
* apply Forall2_cons.

- apply T_Comb_Part with (substTypes := []).
-- reflexivity.
-- apply Forall2_nil.

- apply Forall2_nil.
Qed.

The first subgoal is proven by applying reflexivity. However, there is more to it than
meets the eye: map is looked up in the context, which yields the polymorphic type map ::
(a → b) → [a] → [b]. The specialization [a 7→ Int, b 7→ Int] is applied and the
first argument type removed, yielding [Int] → [Int], that is, the expected type.
The second subgoal checks if the supplied argument matches the previously removed

argument type, that is, if double has the type (Int → Int). In order to do so, we apply
T_Comb_Part once again, this time without any substTypes since double is not a poly-
morphic function. The generated subgoals are similar to the first application with the
exception that we can use Forall2_nil directly because there are no arguments. This
proves that the first and only argument of map matches its corresponding type. Thus,
the proof is finished by applying Forall2_nil. Proving the full application of functions
or constructors works identical because all differences are contained in the computational
part that reflexivity solves.

In the second example id :: (Bool -> Bool) we take a look at explicitly typed expres-
sions and the proposition isSpecializableTo.

Definition example2 : cntxt |- exp2 ::: FuncType Bool Bool.
Proof.

eapply T_Typed.
* apply T_Comb_Part with (substTypes := []);

econstructor.
* apply T_Spec with (substTypes := [Bool]).

reflexivity.
Qed.

We begin with e-applying T_Typed. Without existential variables, the actual type T of the
expression would need to be specified, but in this case it can be inferred from the subgoal

46

4.5. Examples

FuncType (TVar 0) (TVar 0) = ?T that occurs while typing id. Since we already used
T_Comb_Part before, we solve the generated subgoals automatically with econstructor.
To apply a tactic T’ to every subgoal generated by the tactic T, we write T; T’, which
avoids repeating tactics for similar subgoals.
The second subgoal states that (a → a) ⇒ (Bool → Bool), that is, the actual type

of id can be specialized to the explicitly stated type. We can prove this by applying
T_Spec with a list of specialized types for every type variable. Now, one may ask if it is
possible to use this rule without supplying the substitution explicitly since it seems fairly
obvious that the type variable a needs to be specialized to Bool. The answer arises from
the following situation:

multiTypeSubst (funcTVars (FuncType (TVar 0) (TVar 0))) ?substTypes
(FuncType (TVar 0) (TVar 0)) = FuncType Bool Bool

The rule T_Spec uses the function multiTypeSubst to specialize the polymorphic type.
We do not know the types that replace the type variables, but we know the result. A
Curry analogy could look like the example below.

replChar :: Char -> Char -> String -> String
replChar a b s = map (\c -> if (c == a) then b else c) s

replChars :: [Char] -> [Char] -> String -> String
replChars cs ds s = foldr (\cd t -> case cd of (c,d) -> replChar c d t)

s (zip cs ds)
> replChar 'a' b "a -> a" == "B -> B" where b free
{b = 'B'} True

The function replChar replaces a character in a string, similar to replacing a type in a
larger construct of types. Curry allows us to use a free variable in place of the replacement
character and can solve the equation. Coq is able to instantiate variables in such a
scenario too, as we saw in section 3.6: The equation is simplified until both sides contain
similar data structures and then individual components are matched to variables, for
example, FuncType ?a Int = FuncType Char Int would result in the instantiation of
?a with Char.

> replChars ['a', 'b'] cs "a -> b" == "I -> C" where cs free
{cs = ('I':'C':_xk)} True

The actual cause of the problem is the definition of multiTypeSubst or rather that it
replaces multiple variables. The above function replChars is similar to the Coq imple-
mentation of multiTypeSubst and while Curry is able to find a solution of the equation,
Coq cannot instantiate the list ?substTypes.

match ?substTypes with
| [] => FuncType (TVar 0) (TVar 0)
| t :: _ => FuncType t t
end = FuncType Bool Bool

47

4. FlatCurry

One possible problem of the Coq implementation is the usage of zip in multiTypeSubst
because lists of different length are handled by discarding the longer list’s tail. As we
can see in Curry’s solution, using zip entails that lists of arbitrary length satisfy the
equation. However, this behavior is actually quite useful because it allows us to specify
types only for supplied arguments in partial a application.
Implementations, which consider the lists’ length and fail if it differs, do not solve this
problem either; they are stuck at the same step as shown above, even though the solu-
tion is unique. One probable cause of this is that Coq would need to try every branch of
the function and introduce further variables (t in this example), which this tactic is not
capable of.

The last example, that is, the case expression with a free variable, expands on the usage
of automation in proofs. As we already discussed, there are some limitations that require
explicitly supplying some values, but the proof is still shortened significantly by using
the ; and econstructor.

Definition example3 : cntxt |- exp3 ::: Int.
Proof.
apply T_Free with (tyexprs := [TCons ("Prelude", "Maybe") [Int]]);
eapply T_Case;
try instantiate (1 := [Int]);
repeat econstructor.

Qed.

Typing an expression e containing free variables requires explicitly supplying the type of
the variables when applying T_Free. In this case, the free variable has the type Maybe
Int. In order to type e, that is, a case expression, we use eapply with T_Case which
introduces two existential variables ?substTypes and ?Tc, the latter being the type of
the free variable. Although we know that ?substTypes needs to be explicitly supplied,
it is preferable to use eapply nevertheless because ?Tc can be inferred.
In order to further proceed in the proof, we need to supply a value for ?substTypes.

The tactic instantiate instantiates existential variables but works with numbers, in-
stead of variable names, to simplify automation. The variables are enumerated3 by their
first occurrence from right to left in the expression. We instantiate ?substTypes with
the type Int to specialize Maybe a.
We already used ; before, but in this case we use it between all tactics. However,

there are downsides to this approach: T_Case generates three subgoals, all of which
instantiate would be applied to. Existential variables are instantiated globally, that
is, in all subgoals, and would therefore fail. In cases where a tactic is only useful for
some subgoals, try allows the proof to proceed even if the application of the tactic fails.
Because we accumulated all current subgoals with ; and instantiated the existential
variables, a single application of repeat econstructor concludes the last proof of the
FlatCurry chapter.

3Show Existentials can be used in a proof to list existential variables and the corresponding numbers.

48

5. Conclusion

To conclude this thesis, we begin with recapitulating previous chapters and compare the
initial goals with the outcome. Then, we discuss related work as well as future expansions
of the implementation.

5.1. Summary and Results

The first goal of this thesis was to find an appropriate representation of Curry code in
Coq and to implement the type system. After familiarizing us with Coq, Curry and
the theoretical basics, we began formalizing CuMin, a minimal representation of Curry.
Because of its simplicity, CuMin was a good way to gain a deeper understanding of the
structure of programming languages and type systems. We transferred CuMin’s syn-
tax from a BNF representation to Coq, created a context that stores information about
variables and used inductively defined propositions to formalize the inference rules of
CuMin’s type system. Lastly, we proved some examples and discussed advanced Coq
tactics that allowed us to automate proofs in many cases.

Due to CuMin’s theoretical nature, the implementation became a precursor to the formal-
ization of the more practically oriented language FlatCurry. We used the same approach
as with CuMin, beginning with the transfer of the syntax from the Curry implementation
to Coq. We added information about function types and type variables to the context
and created a parser that extracts this information from a FlatCurry program.
The implementation of FlatCurry’s typing rules reused some functions and structures

from CuMin, but the higher complexity of the rules affected the clarity of the implemen-
tation in some places, compared to CuMin. This is particularly apparent in rules with
many let expressions, which result in large, flat terms when using the rule in a proof. In
contrast, quantified variables would require the user to often explicitly specify redundant
information and would add more steps proofs. These problems might be mitigated by
solely using tactics that introduce existential variables, but this compromises the under-
standability of proofs, especially on paper. Thus, the current implementation favors the
understandability of proofs over the readability of the subgoal list or rather the ability
to find the cause of a failed reflexivity application.
In the last sections of the FlatCurry chapter we adapted the FlatCurry.Show module

to incorporate some Coq-specific changes. Based on this, we created a program that
transforms a Curry file into a FlatCurry definition that can be saved and imported as
a Coq file. To conclude the chapter, we transformed a Curry program and proved some
examples, supplemented by a short digression about Coq’s inference capabilities.

49

5. Conclusion

5.2. Related and Future Work

The second goal of this thesis was to provide a basis for the formalization of further
aspects of Curry. While the type system is an important part of a programming language,
there are few interesting properties to be proven about specific expressions or functions
because the type always remains the same and is checked by the compiler. However,
there are other applications like type inference, as shown below.

Fixpoint inferType Gamma (e : Expr) : option TypeExpr :=
match e with
| Var i => (vCon Gamma) i
| Lit l => Some (litType l)
| ...
end.

Theorem typeInference: forall Gamma e, Gamma |- e ::: inferType Gamma (Some e).

The function inferType returns the type of an expression in a context and would work
like hasType. One could proof that such a function yields the same types as the induc-
tively defined proposition and incorporate it into hasType to remove types that need to
be explicitly supplied currently.

Another interesting aspect to formalize is the semantics, that is, rules that determine
the evaluation, of Curry. A simple demonstration of the formalization of a toy language
has been created by Pierce et al. [2016]. It involves representing the syntax in Coq and
formalizing the semantics in form of inference rules. Together with a formalized type
system, one can argue about the type soundness of terms. This means that a well-typed
term is either a value or can be further evaluated while preserving its type.

An approach for imperative languages has been implemented by Blazy et al. [2006]. The
paper presents the formal verification of a compiler front-end1 that translates Clight,
a subset of the imperative programing language C, into the Cminor intermediate lan-
guage. Clight’s syntax is represented in Coq by inductive data types and the semantics
and typing rules are transformed into inductively defined propositions to argue about
the languages and the translation.

In conclusion, there are many more aspects of Curry that could be formalized to expand
the functionality of this implementation.

1https://github.com/AbsInt/CompCert/tree/master/cfrontend

50

Bibliography

Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C compiler
front-end. In FM 2006: Int. Symp. on Formal Methods, volume 4085 of Lecture Notes
in Computer Science, pages 460–475. Springer, 2006. URL http://gallium.inria.
fr/~xleroy/publi/cfront.pdf.

Jean-Christophe Filliâtre. Deductive software verification. International Journal on
Software Tools for Technology Transfer, 13(5):397–403, 2011.

M. Hanus. Functional Logic Programming: From Theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS 7797,
2013.

Michael Hanus, Sergio Antoy, Bern Braßel, Herbert Kuchen, Francisco J. López-Fraguas,
Wolfgang Lux, Juan José Moreno Navarro, Björn Peemöller, and Frank Steiner. Curry:
An Integrated Functional Logic Language, January 2016.

Stefan Mehner, Daniel Seidel, Lutz Straßburger, and Janis Voigtländer. Parametricity
and Proving Free Theorems for Functional-Logic Languages. December 2014. URL
https://hal.inria.fr/hal-01092357;https://hal.inria.fr/hal-01092357/
document;https://hal.inria.fr/hal-01092357/file/ppdp2014-final.pdf.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi,
Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Software
Foundations. Electronic textbook, 2016. Version 4.0. http://www.cis.upenn.edu/
~bcpierce/sf.

The Coq Development Team. The Coq Proof Assistant Reference Manual – Ver-
sion V8.5pl2, 2016. URL https://coq.inria.fr/refman/. https://coq.inria.fr/
refman/.

51

http://gallium.inria.fr/~xleroy/publi/cfront.pdf
http://gallium.inria.fr/~xleroy/publi/cfront.pdf
https://hal.inria.fr/hal-01092357; https://hal.inria.fr/hal-01092357/document; https://hal.inria.fr/hal-01092357/file/ppdp2014-final.pdf
https://hal.inria.fr/hal-01092357; https://hal.inria.fr/hal-01092357/document; https://hal.inria.fr/hal-01092357/file/ppdp2014-final.pdf
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
https://coq.inria.fr/refman/
https://coq.inria.fr/refman/
https://coq.inria.fr/refman/

A. Usage

The source code presented in this thesis can be found at the following link:
https://git.informatik.uni-kiel.de/stu114713/curroqe.
The repository is structured as follows.

• code contains Coq and Curry source files.

– typing contains files regarding CuMin and FlatCurry typing.

∗ Basics.v: General function definitions like zip or elem.

∗ CuMin.v: CuMin syntax definition and typing rules.

∗ FlatCurry.v: FlatCurry syntax definition.

∗ FlatCurryType.v: FlatCurry typing rules.

∗ Maps.v: Polymorphic maps.

– tools contains transformation programs.

∗ showFlatCoq.curry: Transforms Curry files to FlatCurry definitions in
Coq syntax.

∗ FlatCurry contains Curry modules.

· ShowCoq.curry: Adapted Show.curry module.

– _CoqProject: Used to generate a Makefile.

– Thesis.v: Coq code and examples used in the introduction.

• text contains LATEX files.

Compilation In order to compile all Coq files of this project, the _CoqProject file can
be used.

coq_makefile -f _CoqProject -o Makefile

This generates a Makefile that can be executed with make. The generated Makefile
resolves dependencies and calls the Coq compiler coqc. Subsequently, the files can be
opened and imported.
The transformation program can be compiled by using KiCS2 in the respective directory:

kics2 :load ShowCoq.curry :quit
kics2 :load showFlatCoq.curry :save :quit

The first command compiles the ShowCoq module, the second generates a binary that
can be used with a Curry source file as follows.

52

https://git.informatik.uni-kiel.de/stu114713/curroqe

• ./showFlatCoq <name>.curry prints the transformed FlatCurry program to the
terminal. The output can be written to a file by adding > <name>.v to the com-
mand.

• ./showFlatCoq -c <name>.curry prints a _CoqProject file that can be used to
compile the transformed FlatCurry definition file. Similarly, the output can be
written to a file by adding > _CoqProject to the command and then processed by
coq_makefile as shown above.

Transformation The complete process of transforming a Curry file begins with com-
piling the program and using showFlatCoq to generate the definition and _CoqProject
files. The source files contained in the typing directory are assumed to be in the working
directory.

kics2 :load MyProg.curry :quit
./showFlatCoq MyProg.curry > MyProg.v
./showFlatCoq -c MyProg.curry > _CoqProject

If one wants to work in a separate Coq file MyProgProofs.v, the file name needs to
be appended to the _CoqProject file with echo "MyProgProofs.v" >> _CoqProject.
Additionally, the FlatCurry definition and the typing rules needs to be imported with
Require Export CQE.MyProg. in the MyProgProofs.v file. Then, the Makefile can be
created and the Coq files are compiled.

coq_makefile -f _CoqProject -o Makefile
make

The new Coq file can now be opened in a Coq front-end. The import of CQE.MyProg
loads the definition of the Curry program, which is named after the Curry file with _coq
appended, in this example MyProg_coq.

> Check MyProg_coq.
MyProg_coq : FlatCurry.TProg

Finally, the definition can be used in the new Coq file, for example with parseProgram.

53

	Introduction
	Preliminaries
	Coq
	Data Types and Functions
	Propositions and Proofs
	Higher-order Functions
	Inductively Defined Propositions

	Curry
	Theory

	CuMin
	Syntax
	Context
	Data types
	Typing
	Examples
	Automated Proofs

	FlatCurry
	Syntax
	Context
	Typing
	Transformation of FlatCurry into Coq
	Examples

	Conclusion
	Summary and Results
	Related and Future Work

	Usage

