
In Pro. of the Fourteenth International Conferene on Logi Programming,

Leuven (Belgium), July 1997, MIT Press, pp. 138-152

Parallel Evaluation Strategies

for Funtional Logi Languages

Sergio Antoy

Portland State University, Portland, OR 97207, U.S.A.

antoy�s.pdx.edu

Rahid Ehahed

IMAG-LSR, CNRS, BP 53, F-38041 Grenoble, Frane

ehahed�imag.fr

Mihael Hanus

RWTH Aahen, Informatik II, D-52056 Aahen, Germany

hanus�informatik.rwth-aahen.de

Abstrat

We introdue novel, sound, omplete, and loally optimal evaluation strategies

for funtional logi programming languages. Our strategies ombine, in a

non-trivial way, two landmark tehniques in this area: the omputation of

uni�ers performed by needed narrowing in indutively sequential rewrite sys-

tems and the simultaneous redution of a neessary set of redexes performed

by rewriting in weakly orthogonal, onstrutor-based rewrite systems. First,

we de�ne a sequential strategy similar in sope to other narrowing strategies

used in modern lazy funtional logi languages. Then, based on the sequential

strategy, we de�ne a parallel narrowing strategy that has several noteworthy

harateristis: it is the �rst omplete narrowing strategy whih evaluates

ground expressions in a fully deterministi, optimal way; it omputes shortest

derivations and minimal sets of solutions on indutively sequential rewrite sys-

tems; and when ombined with term simpli�ation, it subsumes and improves

all reently developed optimizations of narrowing for overlapping rewrite rules.

1 Introdution

The interest in integrating funtional and logi programming has grown over

the last deade, sine the languages resulting from this integration are ex-

peted to have advantages of both paradigms. Most proposals with a sound

and omplete operational semantis for the integration of funtional and logi

programming languages (see [10℄ for a reent survey) are based on narrowing.

Narrowing solves equations by omputing uni�ers with respet to an equa-

tional theory. Informally, narrowing uni�es a term with the left-hand side of

a rewrite rule and �res the rule on the instantiated term.

Example 1 Consider the following rewrite rules de�ning the addition for

natural numbers, whih are represented by terms built with 0 and s:

0 +X ! X R

1

s(X) + Y ! s(X + Y) R

2

To narrow the equation Z+s(0) � s(s(0)), rule R

2

is applied by instantiating

Z to s(X). To narrow the resulting equation, s(X + s(0)) � s(s(0)), R

1

is

1

applied by instantiating X to 0. The resulting equation, s(s(0)) � s(s(0)), is

trivially true. Thus, fZ 7! s(0)g is the equation's solution.

A brute-fore approah to �nding all the solutions of an equation would at-

tempt to unify eah rule with eah non-variable subterm of the given equation.

The resulting searh spae would be huge even for small programs. Thus,

many narrowing strategies for limiting the size of the searh spae have been

proposed [10℄. Reently, an optimal strategy for indutively sequential re-

write systems (e.g., the rewrite system in Example 1) has been disovered by

extending to narrowing landmark results in term rewriting [2℄. In this paper,

we investigate new evaluation strategies for a more general lass of programs,

namely those de�ned by weakly orthogonal, onstrutor-based systems.

Example 2 Consider the following de�nition of Boolean disjuntion known

as parallel-or.

X _ true ! true R

1

true _ X ! true R

2

false _ false ! false R

3

(1)

A signi�ant di�erene of this system w.r.t. the previous one is the overlap-

ping of the �rst two rules. As a onsequene, a term of the form t

1

_ t

2

may

be narrowed to normal form by narrowing either t

1

or t

2

, although we do not

know of any riterion to make this hoie without look-ahead.

To plae our results in a ontext, we briey review relevant results about

rewriting strategies. O'Donnell has shown [19℄ that the parallel outermost

strategy is normalizing for almost orthogonal TRSs, hene for weakly ortho-

gonal, onstrutor-based TRSs. In general, some redutions performed by this

strategy ould be avoided. Huet and L�evy have shown [11℄ that for the lass of

strongly sequential TRSs there is an e�etive strategy that performs only un-

avoidable redutions. Sekar and Ramakrishnan [21℄ have re�ned O'Donnell's

result in a di�erent diretion. Within the lass of the weakly orthogonal,

onstrutor-based TRSs, they have shown that it is possible to minimize the

set of redexes that must be redued in parallel in a term to ompute its nor-

mal form. The resulting strategy, similar to Huet and L�evy's, does not take

into aount the right hand sides of the TRS's rules, and it is optimal among

the strategies with this limitation.

To date, only one narrowing strategy generalizes a rewriting strategy.

Huet and L�evy's approah has been extended to narrowing for indutively-

sequential TRSs with omparable properties. The resulting strategy, alled

needed [2℄, performs only unavoidable steps and turns out to be optimal also

with respet to the omputed uni�ers. However, narrowing strategies for

weakly orthogonal TRSs depart radially from O'Donnell's and Sekar and

Ramakrishnan's approahes in that they are sequential. This departure has

a major impat on the operational meaning of ompleteness of a strategy.

If a ground term t has a normal form, then both O'Donnell's and Sekar

and Ramakrishnan's strategies ompute the normal form of t by means of

deterministi, parallel

1

steps. Narrowing t is equivalent to rewriting it, sine

1

In this ontext, parallel means that several, possibly di�erent redexes are simultaneously

redued in a single step.

2

we are assuming that t is ground. All the existing narrowing strategies that

are known to be ground omplete narrow t to its normal form by means

of possibly don't-know non-deterministi, sequential steps. This notion of

ompleteness is somewhat redutive in the sense that the implementations of

these strategies don't know how to ompute the normal form of t without a

severe penalty in eÆieny. However, this need not be the ase for all ground

and for some non-ground terms.

The subjet of this paper is a parallel strategy for narrowing. Our strategy

is sound and omplete and an be implemented relatively eÆiently by uni�-

ation. It always omputes the normal form of a ground term, if there exists

one, without non-determinism and as eÆiently as possible under a set of

reasonable assumptions. Our strategy narrows a neessary set of positions,

whih generally ontains fewer than all the outermost narrowable positions of

a term. Our parallel strategy falls bak to the needed narrowing strategy [2℄

on the indutively sequential portions of a TRS, and onsequently is optimal

on these portions, and falls bak to Sekar and Ramakrishnan's strategy on the

ground terms, and onsequently is optimal (in a weaker sense) on the ground

portions of a omputation, too. Note that our parallel narrowing strategy is

not intended as a tehnique to implement funtional logi languages on par-

allel arhitetures, sine the parallelism is too �ne-grained. The parallelism

is mainly used to avoid some redundant non-deterministi hoies of simpler

narrowing strategies.

The paper is organized as follows. Some preliminary de�nitions and nota-

tions are listed in the next setion. Setion 3 de�nes the weakly needed re-

writing strategy whih is a parallel rewriting strategy designed for the lass

of weakly orthogonal, onstrutor-based TRSs. In Setion 4, we present a

sequential narrowing strategy whih is a natural extension of needed narrow-

ing to overlapping TRSs. We de�ne the parallel narrowing strategy and an

important improvement in Setions 5 and 6 and disuss its optimality in Se-

tion 7. Comparison with related work is given in Setion 8. Due to lak of

spae, some detailed de�nitions and all proofs are omitted from this paper.

A full version ontaining all the details an be found in [3℄.

2 Preliminaries

We reall some key notions and notations about rewriting. We are onsistent

with the onventions of [5, 13℄.

Terms are onstruted w.r.t. a given many-sorted signature �. The set of

variables ourring in a term t is denoted by Var(t). A term t is alled ground

if Var(t) = ?. In pratie, most funtional logi programs are onstrutor-

based, i.e., symbols, alled onstrutors, that onstrut data terms are distin-

guished from those, alled de�ned funtions or operations, that operate on

data terms (see, for instane, the funtional logi languages ALF [8℄, BABEL

[18℄, K-LEAF [7℄, LPG [4℄). Hene, we assume that R is a onstrutor-

based term rewriting system onsisting of rewrite rules l ! r, where l is a

pattern, i.e., the root of l is an operation symbol and the arguments of l do

not ontain any operation symbol. A term f(t

1

; : : : ; t

n

) (n � 0) is alled an

operation-rooted term if f is an operation.

Substitutions and uni�ers are de�ned as usual [5℄, where we writemgu(s; t)

for the most general uni�er of s and t. We write � �

V

� i� the substitutions

3

� and � are renamed variants on the set V . We write t � t

0

(respetively,

� �

V

�

0

) i� there is a substitution � suh that t

0

= �(t) (respetively, �

0

(x) =

�(�(x)) for all variables x 2 V).

An ourrene or position p is a sequene of positive integers identifying a

subterm in a term. t

jp

denotes the subterm of t at position p, and the result

of replaing t

jp

with s in t is denoted by t[s℄

p

. We write p � q to denote that

the position p is a pre�x of q.

A redution step is an appliation of a rewrite rule l ! r to the redex t

jp

,

i.e., t !

p; l!r

s if s = t[�(r)℄

p

for some substitution � with t

jp

= �(l).

�

!

denotes the transitive and reexive losure of !. A term t is reduible to a

term s if t

�

! s. A term t is alled irreduible or in normal form if there is no

term s with t ! s. A term rewriting system R is alled terminating if there

are no in�nite rewrite derivations w.r.t. R.

Rewriting is omputing the value of a funtional expression, i.e., its normal

form obtained by rewriting. Funtional logi programs ompute with partial

information, i.e., a funtional expression may ontain logi variables. The goal

is to ompute values for these variables suh that the expression is evaluable

to a partiular normal form, e.g., a onstrutor term [4, 7, 18℄. This is done

by narrowing. A term t is narrowable to a term s if there exist a non-variable

position p in t (i.e., t

jp

is not a variable), a variant l ! r of a rewrite rule

in R with Var(t) \ Var(l ! r) = ? and a uni�er � of t

jp

and l suh that

s = �(t[r℄

p

). In this ase we write t ;

p; l!r;�

s, where p and l ! r are

sometimes omitted. If � is a most general uni�er of t

jp

and l, the narrowing

step is alled most general. Sine the instantiation of the variables in the rule

l ! r by � is not relevant for the omputed result of a narrowing derivation,

we will omit this part of �.

In most papers, narrowing is intended as most general narrowing [10℄.

Most general narrowing has the advantage that most general uni�ers are

uniquely omputable, whereas there exist many independent uni�ers. How-

ever, as shown in [2℄, most general uni�ers must be dropped to obtain an

optimal narrowing strategy. This paper follows the same approah.

Narrowing is intended to solve goals, where a goal is a Boolean expression

that should be redued to the onstant true. Thus, a substitution � is a

solution for a goal G i� �(G) is reduible to true. This is general enough to

over the equation solving apabilities of urrent funtional logi languages

with a lazy operational semantis, like BABEL [18℄ or K-LEAF [7℄, sine the

strit equality

2

� an be de�ned as a binary operation by a set of orthogonal

rewrite rules (see [2, 7, 18℄ for more details about strit equality). An import-

ant onsequene of restriting narrowing to goals is the fat that during the

suessful rewriting of a goal the topmost symbol is always an operation or

the onstant true. This property will be used to simplify the presentation of

our results. Note that the evaluation of an arbitrary term t to a onstrutor

normal form an be obtained by solving the goal t � X.

To ensure the onuene of the rewrite relation, we also require weak

orthogonality. A term rewriting system R is weakly orthogonal if for eah

rule l ! r 2 R the left-hand side l does not ontain multiple ourrenes

of a variable (left-linearity) and for eah pair of rules l ! r; l

0

! r

0

2 R,

2

The strit equality t � t

0

holds if t and t

0

are reduible to the same ground onstrutor

term. Note that normal forms may not exist in general due to non-terminating rewrite rules.

4

non-variable subterm l

jp

of l, and mgu � for l

jp

and l

0

, the terms �(l[r

0

℄

p

) and

�(r) are idential. R is almost orthogonal if it is weakly orthogonal and for

eah pair of rules l ! r; l

0

! r

0

2 R, the only possible non-variable subterm

of l that may unify with l

0

is l itself. Sine we onsider in the following only

Construtor-based, Almost orthogonal, Term rewriting systems, we write

CAT for this lass.

It is easy to see that for onstrutor-based systems almost and weak or-

thogonality are the same onept, sine the left-hand sides of the rules are

patterns. The notion of desendant, well-known for orthogonal systems [11℄, is

extended to almost orthogonal systems without diÆulties. Here we provide

an intuitive de�nition as proposed in [14℄. Let t

�

! t

0

be a redution sequene

and s a subterm of t. The desendants of s in t

0

are omputed as follows:

Underline the root of s and perform the redution sequene t

�

! t

0

. Then,

every subterm of t

0

with an underlined root is a desendant of s. A position

u of a term t is alled needed i� in every redution sequene of t to a normal

form a desendant of t

ju

is rewritten at its root.

Example 3 Consider the rewrite rule R

3

= double(X)! X+X. The follow-

ing redution of double(0+0) shows, by means of underlining, the desendants

of 0 + 0.

double(0 + 0)!

�;R

3

(0 + 0) + (0 + 0)

The set of desendants of position 1 by the above redution is f1; 2g.

3 Weakly Needed Rewriting

For indutively sequential systems there exists a narrowing strategy [2℄ that

performs only steps that are needed for solving goals. This strategy is a gen-

eralization to narrowing of the sequential rewriting strategy presented in [1℄.

This sequential strategy is also the basis of a parallel rewriting strategy for

weakly orthogonal, onstrutor-based rewrite systems, referred to as weakly

needed rewriting and skethed �rst in [1℄, that omputes the same redution

sequenes of [21℄, although the overall approah is di�erent. In this setion,

we reformulate the weakly needed rewriting strategy and show one important

property of this generalization. We begin with some tehnial de�nitions.

A de�nitional tree is a hierarhial struture ontaining the rules of a

de�ned operation of a rewrite system. The symbols rule, branh, and or

ourring in the next de�nition, are uninterpreted funtions used to lassify

the nodes of the tree. A de�nitional tree an be seen as a partially ordered

set of patterns with some additional onstraints.

De�nition 1 T is a generalized de�nitional tree, or gdt, with pattern � i�

the depth of T is �nite, � is a pattern, and one of the following ases holds:

T = rule(l ! r); where l ! r is a variant of a rule of R with � = l.

T = branh(�; o; T

1

; : : : ;T

k

); where o is an ourrene of a variable in �,

1

; : : : ;

k

are di�erent onstrutors of the sort of �

jo

, for some k > 0,

and, for all j in f1; : : : ; kg, T

j

is a gdt with pattern �[

j

(X

1

; : : : ;X

n

)℄

o

,

where n is the arity of

j

and X

1

; : : : ;X

n

are new variables.

T = or(T

1

; : : : ;T

k

); where k > 1 and eah T

j

is a gdt with pattern �.

5

X

1

_X

2

X

1

_X

2

true _X

2

true

false _X

2

X

1

_X

2

X

1

_ true

true

X

1

_ false

false _ false false _ false

false false

Figure 1: Pitorial representation of a parallel de�nitional tree of the operation

parallel-or de�ned in display (1). The branh variables in the patterns of branh

nodes are underlined. Or-ed branhes are joined by an ar.

In the remainder of the paper, we will use the notation pattern(T) to denote

the pattern argument of a gdt T .

Let R be a rewrite system. T is a gdt of an operation f i� T is a gdt suh

that pattern(T) = f(X

1

; : : : ;X

n

), where n is the arity of f and X

1

; : : : ;X

n

are new distint variables, and for every rule l ! r of R with l = f(t

1

; : : : ; t

n

)

there exists a leaf rule(l

0

! r

0

) of T suh that l is a variant of l

0

.

A generalized de�nitional tree T is alled parallel de�nitional tree, abbre-

viated pdt , i� in every node or(T

1

; : : : ;T

k

) every T

j

has a branh node at the

top, where these branh nodes ontain pairwise di�erent positions.

A de�nitional tree is a generalized de�nitional tree without or-nodes.

3

Figure 1 pitorially represents the parallel de�nitional tree of the rules of the

parallel-or shown in Example 2. It is easy to see that a generalized de�nitional

tree exists for eah operation. A parallel de�nitional tree may not exist if the

rewrite system ontains useless rules, i.e., rules that are instanes of another

rule. By eliminating all the useless rules from a rewrite system R, every

operation of the resulting system has a parallel de�nitional tree whih an be

e�etively onstruted [1, Th. 19℄. Moreover, the rewrite relation and the set

of solutions is not hanged by this elimination. From now on, we assume that

every rewrite system that we are dealing with has no useless rules.

A parallel de�nitional tree may be deomposed into a set of sequen-

tial omponents eah of whih is a (sequential) de�nitional tree. If T =

rule(l ! r), then T itself is the only sequential omponent of T . If

T = branh(�; o; T

1

; : : : ;T

k

), then branh(�; o; T

0

1

; : : : ; T

0

k

) is a sequential

omponent of T for all sequential omponents T

0

j

of T

j

, j = 1; : : : ; k. If

T = or(T

1

; : : : ;T

k

), then, for all sequential omponents T

0

of T

j

, T

0

is a

sequential omponent of T .

Below, we reall the de�nition of needed rewriting. Needed rewriting

is a strategy for indutively sequential systems, i.e., rewrite systems where

eah funtion has a de�nitional tree. Loosely speaking, the rewriting (and

narrowing) strategies presented in this paper are obtained by breaking up

3

This orresponds to the de�nition given in [2℄ exept that we ignore the exempt nodes.

6

X

1

_X

2

true _X

2

true

false _X

2

X

1

_X

2

X

1

_ true

true

X

1

_ false

false _ false false _ false

false false

Figure 2: Pitorial representation of the sequential omponents of the parallel de�n-

itional tree of the operation parallel-or de�ned in display (1). Eah omponent is a

sequential de�nitional tree and is obtained by taking one distint subtree of the or

node at the root in Fig. 1.

a CAT into its indutively sequential omponents, applying needed rewriting

(or narrowing) to eah omponent, and ombining together the results of eah

appliation.

The needed rewriting strategy is implemented by a funtion, ', that takes

two arguments, an operation-rooted term, t, and a de�nitional tree, T , of the

root of t. Throughout an interleaved desent down both t and T , ' omputes,

whenever possible, a position p and a rule R suh that t must be redued at

p, using rule R, to ompute its onstrutor normal form.

De�nition 2 The partial funtion ' takes two arguments, an operation-

rooted term t and a de�nitional tree T suh that pattern(T) � t. If '(t; T)

is de�ned, it yields a pair, (p;R), where p is a position of t and R is a rewrite

rule appliable to t at p. The funtion ' is de�ned reursively as follows

'(t; T) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(�; R) if T = rule(R);

'(t; T

i

) if T = branh(�; o; T

1

; : : : ; T

k

) and

pattern(T

i

) � t, for some i;

(o � p;R) if T = branh(�; o; T

1

; : : : ; T

k

), t

jo

is operation-

rooted, T

0

is a de�nitional tree of the root of

t

jo

, and '(t

jo

;T

0

) = (p;R).

In order to extend the strategy ' to CATs, we apply ' to all the sequential

omponents of a pdt and selet the disjoint outermost positions from all om-

puted positions. This strategy is denoted by �'. The weakly needed rewriting

strategy redues all redexes at positions omputed by �' in parallel.

Example 4 Consider the rewrite system of Example 2 and the term t =

(true_(true_true))_(X_(false_false). The weakly needed rewrite derivation

omputed by �' is

t!

(1;R

2

);(2�2;R

3

)

true _ (X _ false)!

(�;R

2

)

true

The following theorem shows that �rst, unless we perform at least one re-

dution step omputed by �' we annot obtain the normal form and seond,

that if we perform all the steps omputed by �' we do obtain the normal form

(whenever it is a onstrutor term) of a goal.

7

Theorem 1 Let R be a CAT, and G a goal whih is reduible to `true'.

1. Every strategy normalizing G must redue a desendant of G at some pos-

ition omputed by �'.

2. A strategy S that redues the desendants of the redexes omputed in G by

�' is normalizing.

Thus, �' omputes a neessary set of redexes in the sense of [21℄, although

the way in whih the set is omputed, i.e. by means of ', is quite di�erent.

We de�ne in the next setion a generalization of ', �, that simultaneously

omputes both a redex and a uni�er. This allows us to generalize to narrowing

the results of [21℄ on rewriting.

4 Weakly Needed Narrowing

In this setion we study our �rst narrowing strategy for CATs. This strategy

is sequential and ould be seen as a natural extension to overlapping TRSs

of needed narrowing [2℄. In order to de�ne the narrowing steps, we use the

sequential omponents of a parallel de�nitional tree. Loosely speaking, we

apply the needed narrowing strategy � (de�ned in [2℄ and realled below)

to all the sequential omponents of a pdt and ombine the results together.

Sine � omputes optimal narrowing derivations for indutively sequential

programs, our strategy is a onservative extension of an optimal strategy.

De�nition 3 The funtion � takes two arguments, an operation-rooted term

t and a de�nitional tree T suh that pattern(T) and t unify. The funtion �

yields a set of triples of the form (p;R; �), where p is a position of t, R is a

rewrite rule, l ! r, of R and � is a uni�er of l and t

jp

. Thus, let t be a term

and T a de�nitional tree in the domain of �. The funtion � is de�ned to

yield least sets of triples satisfying the following onditions.

�(t; T) �

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

f(�; l ! r;mgu(t; l))g if T = rule(l ! r);

�(t; T

i

) if T = branh(�; o; T

1

; : : : ; T

k

),

t and pattern(T

i

) unify, for some i;

f(o � p;R; � Æ �)g if T = branh(�; o; T

1

; : : : ; T

k

),

t

jo

is operation-rooted, � = mgu(t; �),

T

0

is a de�nitional tree of the root of

�(t

jo

), and (p;R; �) 2 �(�(t

jo

);T

0

).

If (p; l ! r; �) 2 �(t; T), then t ;

p; l!r;�

�(t[r℄

p

) is a narrowing step. As

in proof proedures for logi programming, we have to apply variants of the

rewrite rules with fresh variables at eah narrowing step, i.e., the de�nitional

trees always ontain new variables if they are used in a narrowing step.

De�nition 4 The funtion

�

� takes two arguments, an operation-rooted term

t and a pdt T suh that pattern(T) and t unify. Then,

�

� is de�ned by

�

�(t; T) = f(p;R; �) 2 �(t; T

0

) j T

0

is a sequential omponent of T g

We all weakly needed any narrowing step t;

p;R;�

t

0

with (p;R; �) 2

�

�(t; T).

Weakly needed narrowing is almost idential to the demand driven narrowing

strategy proposed in [16℄. However, soundness and ompleteness results are

not provided in [16℄.

8

Example 5 Consider Example 2 with the additional rule R

4

= f(a)! true

and the term t = f(X) _ f(X). Let T denote the parallel de�nitional tree

of _" pitorially represented in Fig. 1. The sequential omponents of T are

pitorially represented in Fig. 2. Aording to De�nition 4,

�

�(t; T) is

f(1;R

4

; fX 7! ag); (2;R

4

; fX 7! ag)g

whih spei�es the following narrowing steps:

t;

1;R

4

;fX 7!ag

true _ f(a)

t;

2;R

4

;fX 7!ag

f(a) _ true

Theorem 2 (Soundness of weakly needed narrowing) Let R be a CAT and

G a goal. If G ;

�

1

� � � ;

�

n

true is a narrowing derivation omputed by

�

�,

then �

n

Æ � � � Æ �

1

is a solution for G.

The ompleteness of weakly needed narrowing is stated w.r.t. onstrutor

substitutions as solutions of goals, i.e., substitutions mapping variables into

onstrutor terms. This is not a limitation in pratie, sine more general

solutions would ontain unevaluated or unde�ned expressions. This is not

a limitation with respet to related work, sine most general narrowing is

known to be omplete only for irreduible solutions [12℄, and lazy narrowing

is omplete only for onstrutor substitutions [7, 18℄.

Theorem 3 (Completeness of weakly needed narrowing) Let R be a CAT.

Let � be a onstrutor substitution that is a solution of a goal G and V be

a �nite set of variables ontaining Var(G). Then

�

� omputes a narrowing

derivation G;

�

1

� � �;

�

n

true suh that �

n

Æ � � � Æ �

1

�

V

�.

If we onsider again the term t in Example 5, we an observe that, to narrow

t to true, the strategy

�

� omputes four distint derivations with the same

substitution fX 7! ag. In order to avoid suh redundant omputations, we

propose a parallel narrowing strategy in the next setion.

5 Parallel Narrowing

Classi narrowing may be de�ned in two steps as follows: t narrows to t

0

i� there exists a substitution � suh that the term �(t) rewrites to t

0

using

some rewrite rule l ! r. From this informal de�nition, narrowing di�ers

from rewriting only by the instantiation step. Now, if we generalize this idea

to parallel rewriting, i.e., if we replae the rewriting step, in the narrowing

relation, by a parallel rewriting step, we obtain a new relation that we all

parallel narrowing. The de�nition below formalizes the idea that we just

skethed and de�nes a parallel narrowing step as an instantiation followed by

a parallel rewriting step.

De�nition 5 Let R be a term rewriting system and S a parallel rewriting

strategy. t

S

;

;

�

t

0

is a parallel narrowing step (w.r.t. S) i� �(t)

S

! t

0

. A

parallel narrowing strategy N

S

is a funtion from terms to sets of substitutions,

N

S

: T (�;X)! 2

Sub

. A substitution � is in N

S

(t) only if there exists a term

t

0

suh that t

S

;

;

�

t

0

. We denote the parallel narrowing relation w.r.t. a

strategy N

S

by

N

S

;

;

.

9

Throughout this setion, parallel narrowing is de�ned upon the parallel re-

writing strategy �'. Below we de�ne the parallel narrowing strategy

�

�

�. There

are two main di�erenes w.r.t. weakly needed narrowing:

�

�

� may disregard

some uni�ers omputed by weakly needed narrowing whih ontribute to re-

dundant derivations, and at every narrowing step a neessary set of redexes

of the instantiated term is redued in parallel.

De�nition 6 Let R be a CAT, t an operation-rooted term, T a parallel

de�nitional tree of the root of t. We de�ne the parallel narrowing strategy

�

�

�

as follows.

4

�

�

�(t; T) = f�

jVar(t)

j 9 (p;R; �) 2

�

�(t; T); 8 (q;R

0

; �) 2

�

�(t; T);

(� �

Var(t)

� and � 6�

Var(t)

id) � �

Var(t)

�) and

(� �

Var(t)

id and q � p) � �

Var(t)

id)g = �

Intuitively, a substitution � belongs to

�

�

�(t; T) i� � is either the identity or

a minimal substitution (w.r.t. �) among the non-identity substitutions om-

puted by

�

�(t; T). Furthermore, whenever two triples (p;R; id) and (q;R

0

; �)

belong to

�

�(t; T) with p being a pre�x of q (p � q), the substitution � is not

onsidered by the strategy

�

�

�.

Example 6 Consider the following rewrite rules:

X � 0 ! 0 R

1

0 � X ! 0 R

2

f(s(s(X))) ! 0 R

3

g(X) ! g(s(X)) R

4

and the term t = g(X) � (f(Y) � (0 � f(s(Y)))). One an easily verify that

�

�(t; T) = f(1;R

4

; id); (2�1;R

3

; fY 7! s(s(Y

1

))g); (2�2;R

2

; id);

(2�2�2;R

3

; fY 7! s(Y

2

)g)g

�

�

�(t; T) = fidg

(for some pdt T). The uni�er fY 7! s(s(Y

1

))g is disarded sine it is an

instane of fY 7! s(Y

2

)g. The uni�er fY 7! s(Y

2

)g is disarded sine the redex

reated by its appliation is non-outermost. Thus the strategy

�

�

� rewrites the

term t in parallel at positions 1 and 2�2.

Theorem 4

�

�

�

;

;

is sound and omplete in the sense of Theorems 2 and 3.

6 Parallel Narrowing with Simpli�ation

The strategy

�

�

� improves weakly needed narrowing, but it may still perform

some redundant omputations, as shown in the following example.

4

The set notation f�

jVar(t)

j � � �g = � means that this set must not ontain two substitu-

tions �

1

; �

2

with �

1

�

Var(t)

�

2

.

10

Example 7 Consider the rules of Example 6. Let t = f(s(Y)) � f(s(s(Y))).

Then, for an appropriate pdt T ,

�

�

�(t; T) = fid; fY 7! s(Y

2

)gg. If we develop

the searh spae of t, we will ompute twie the result 0 with the substitution

id and the redundant substitution fY 7! s(Y

2

)g. However, if we simplify t

to f(s(Y)) � 0 by applying a rewrite step with rule R

3

(note that all rules

exept R

4

are terminating) before applying a parallel narrowing step, we will

ompute only one the result 0 with the identity substitution.

In this setion we de�ne a new parallel narrowing strategy whih ombines

the strategy

�

�

� with a kind of term simpli�ation. The resulting strategy is

omplete and avoids some useless omputations performed by

�

�

�. In order

to support exible simpli�ation strategies, we ombine

�

�

� with a simplifying

rewriting strategy whih is a mapping S from terms to terms suh that

1. 8 t 2 T (�;X);S(t) = t

0

) t

�

! t

0

(i.e., S is ompatible with rewriting)

2. S is reursive (i.e., S is omputable).

For instane, mapping a term to itself, or its redut, or one of its desend-

ants obtained using terminating rules are all plausible simplifying rewrit-

ing strategies. The following de�nition introdues a new parallel narrowing

strategy that ombines

�

�

� and a simplifying rewriting strategy. We denote by

�

�

�(t) the substitution set

�

�

�(t; T) if t is operation-rooted and T is a parallel

de�nitional tree of the root of t, or the empty set if t is not operation-rooted.

De�nition 7 Let R be a CAT, S a simplifying rewriting strategy, and t

an operation-rooted term. We all parallel narrowing with simpli�ation the

binary relation

�

�

�

S

over terms de�ned as follows: t

�

�

�

S

;

;

�

t

0

i� either

� � 2

�

�

�(S(t)) and S(t)

�

�

�

;

;

�

t

0

, or

�

�

�

�(S(t)) = ?, t

0

= S(t), t

0

6= t, and � = id.

Thus, parallel narrowing with simpli�ation deterministially simpli�es a term

before applying a narrowing step. It may happen that no narrowing step is

appliable after simpli�ation sine the term may be redued to normal form,

whih is the reason for the seond ase in the de�nition.

Theorem 5 Let S be a simplifying rewriting strategy. The parallel narrowing

with simpli�ation strategy

�

�

�

S

is sound and omplete in the sense of Theor-

ems 2 and 3.

If we use a parallel rewriting strategy similar to �' to ompute simpli�a-

tion steps, then the simpli�ation steps an also be onsidered as narrowing

steps where the applied substitution is the identity. Therefore, one might

suppose that the ommitment to the identity substitution in the de�nition of

�

�

� (whenever possible) has the same e�et as simpli�ation. Unfortunately,

suh a ommitment destroys the ompleteness of parallel narrowing, as an

be seen by developing the searh spae for the term g(X) � f(Y) w.r.t. the

rules in Example 6.

11

7 Optimality

In this setion we disuss two optimality results of our narrowing strategies.

Indutively sequential systems are a sublass of CATs. An indutively sequen-

tial operation f has a parallel de�nitional tree T with exatly one sequen-

tial omponent, i.e., T itself is a (sequential) de�nitional tree. Both weakly

needed narrowing and parallel narrowing behave as needed narrowing when

they operate on suh a tree.

Theorem 6 Let R be a CAT, t an operation-rooted term whose de�ned oper-

ations are all indutively sequential. Then, for appropriate de�nitional trees

for the operations in t, the narrowing steps of t omputed by both weakly

needed narrowing and parallel narrowing are the same as the narrowing steps

of t omputed by needed narrowing.

We now turn our attention to the behavior of parallel narrowing on ground

goals.

Theorem 7 The parallel narrowing strategy is (deterministially) normaliz-

ing on ground goals.

The above results show that parallel narrowing is a onservative extension of

two optimal strategies, needed narrowing on indutively sequential systems

and rewriting neessary sets on ground terms.

The strong optimality results of needed narrowing annot be expeted to

hold for both weakly needed and parallel narrowing. In partiular, we reall

that rewriting and/or narrowing needed positions is not always possible in

almost orthogonal TRSs, sine suh positions generally do not exist [21℄. Fur-

thermore, omputing only independent uni�ers seems unlikely, too, without

look-ahead, as the next example shows.

Example 8 Consider the parallel-or of Example 2 together with the rules

f(0;X) ! X h(0) ! true

and the goal f(X;h(Y)) _ f(Y; h(X)). Parallel narrowing omputes two de-

rivations of this goal beginning with di�erent uni�ers, eventually to disover

that they yield the same substitution.

8 Related Work

In this setion we ompare our parallel narrowing strategy with other narrow-

ing strategies proposed for CATs. There are also many narrowing strategies

for other rewrite systems than CATs, like innermost, outermost, or basi

narrowing (see [10℄). However, all these strategies require the termination

of the rewrite relation whih is an undeidable property and immediately

exludes typial funtional programming tehniques like in�nite data stru-

tures. To ensure onuene in the presene of non-terminating rules, weak

orthogonality and onstrutor-based rewrite rules are natural requirements.

For this lass of rewrite systems, lazy narrowing has been proposed (see, e.g.,

12

[7, 18, 20℄). Similarly to lazy evaluation in funtional languages, lazy nar-

rowing evaluates an inner term only when its value is demanded to narrow

an outer term. In ontrast to funtional languages, a naive version of lazy

narrowing may evaluate the same argument several times due to the non-

deterministi hoie of a funtion's rewrite rules. Therefore, several methods

have been proposed aiming at evaluating arguments ommonly demanded by

all rules before the non-deterministi hoie (e.g., [2, 16℄). Needed narrowing

[2℄ is the only strategy that has been shown to be optimal w.r.t. the length

of derivations and the number of omputed solutions. Needed narrowing is

de�ned for indutively sequential systems, and we have shown in Theorem 6

that parallel narrowing is a onservative extension of this optimal strategy.

In ase of overlapping rules, the situation is more diÆult sine an argu-

ment may be demanded by some rule but not demanded by another rule for

the same funtion. This has the unfortunate e�et that naive lazy narrowing

is often ineÆient for suh rules [9℄. There are di�erent proposals to improve

naive lazy narrowing in this ase. For instane, Loogen and Winkler [17℄

propose the dynami ut whih ignores subsequent alternative rules for nar-

rowing if a rule is appliable without binding of goal variables. The e�et of

the dynami ut is subsumed by our strategy sine parallel narrowing prefers

deterministi redutions at the root:

Proposition 1 Let R be a CAT, t an operation-rooted term and l ! r 2 R

a rule with �(l) = t for some substitution �. Then t

�

�

�

;

;

id

�(r) is the only

parallel narrowing step starting at t.

This proposition also shows another advantage of our parallel narrowing

strategy in omparison to the dynami ut: parallel narrowing is independent

of the order of rewrite rules. Sine the dynami ut only disards alternative

rules after the urrent rule, it has no e�et if the appliation of previous rules

instantiates variables. This disadvantage is omitted in [9℄ where the om-

bination of lazy narrowing with possible redution steps between narrowing

steps is proposed. In order to ensure the ompleteness of this lazy narrow-

ing with simpli�ation strategy, a terminating subset of all rewrite rules is

used for redution. Parallel narrowing does not subsume lazy narrowing with

simpli�ation, as an be seen in Example 7. However, simpli�ation with

a terminating set of rewrite rules is a simplifying rewrite strategy. There-

fore, parallel narrowing with simpli�ation has the same advantage as lazy

narrowing with simpli�ation.

Parallel narrowing is not intended as a strategy to implement funtional

logi languages on parallel arhitetures due to its �ne-grained parallelism.

This is in ontrast to the AND-parallel narrowing implementation presented

in [15℄ where independent subterms are evaluated in parallel. However, due

to the fat that parallel narrowing redues the number of non-deterministi

hoies in narrowing steps (ompared to lassi narrowing), parallel narrowing

is useful to avoid redundant omputations in OR-parallel implementations of

narrowing.

The following table summarizes the harateristis of the major narrowing

strategies for weakly orthogonal onstrutor-based rewrite systems. \Ground

deterministi" means that a strategy performs only deterministi omputa-

tions steps for all programs and all ground goals. \Normalizing" is satis�ed

if a strategy omputes the normal form of a (non-ground) goal G satisfying

13

G

�

! true in a fully deterministi way. In this ase, a sequential implementa-

tion of this strategy always omputes the normal form whenever it exists.

Strategy

Ground

deterministi:

Normalizing: Optimality properties:

simple lazy [18, 20℄ no no

weakly needed [16℄ no no

dynami ut [17℄ no no

lazy narrowing with

simpli�ation [9℄

terminating

TRS

terminating

TRS

parallel narrowing yes no

parallel narrowing

with simpli�ation

yes

terminating

TRS

indutively sequential TRSs:

shortest derivations (sharing)

minimal number of solutions

Parallel narrowing (with simpli�ation) is deterministi on ground terms

by Theorem 7. However, parallel narrowing without simpli�ation is not

normalizing as shown in Example 7. The optimality of parallel narrowing

follows from the optimality results for needed narrowing [2℄ by Theorem 6.

This table shows that parallel narrowing is not only a further narrow-

ing strategy with some optimizations, but it is the only strategy whih sub-

sumes the advantages of known lazy narrowing strategies together with learly

de�ned optimality results. Due to its fully deterministi behavior on fun-

tional programs (ground terms) and its ability to ompute solutions to non-

ground goals, it is the �rst sound and omplete strategy whih ombines the

evaluation mehanisms of funtional and logi programs in a seamless way.

9 Conlusions

We have presented a new narrowing strategy for weakly orthogonal, onstru-

tor-based rewrite systems. Sine this lass inludes non-terminating systems,

it adequately models the funtional omponent of modern, integrated fun-

tional logi languages. The main idea of our narrowing strategy is the parallel

evaluation of neessary sets of redexes. This leads to a generalization of Sekar

and Ramakrishnan's work on rewriting to narrowing. Parallel narrowing is

a onservative extension of an optimal narrowing strategy, needed narrowing

[2℄, to weakly orthogonal rewrite systems. Furthermore, parallel narrowing is

the only known narrowing strategy for possibly non-terminating and overlap-

ping TRSs whih evaluates ground terms in a fully deterministi way. It an

be implemented relatively eÆiently, sine narrowing steps are omputed by

loal omputations based on uni�ation.

5

These features seem to make this

strategy the best available hoie for the implementation of funtional logi

programming languages.

Aknowledgements. Sergio Antoy was supported in part by the National Siene

Foundation under grant CCR-9406751. Rahid Ehahed was supported in part by

the Frenh Centre National de la Reherhe Sienti�que (GDR Programmation du

CNRS) and by Portland State University. Mihael Hanus was supported in part

by the German Ministry for Researh and Tehnology (BMFT) under grant ITS

9103 and by the ESPRIT Basi Researh Working Group 6028 (Constrution of

Computational Logis).

5

An implementation of parallel narrowing based on the ompilation into Prolog is de-

sribed in [6℄.

14

Referenes

[1℄ S. Antoy. De�nitional trees. In Pro. of the 4th Intl. Conf. on Algebrai and

Logi Programming, pages 143{157. Springer LNCS 632, 1992.

[2℄ S. Antoy, R. Ehahed, and M. Hanus. A needed narrowing strategy. In Pro. 21st

ACM Symp. on Priniples of Programming Languages, pages 268{279, 1994.

[3℄ S. Antoy, R. Ehahed, and M. Hanus. Parallel Evaluation Strategies for Fun-

tional Logi Languages Portland State University, 1996. Available via URL

ftp://ftp.s.pdx.edu/pub/faulty/antoy/Parallel-Evaluation-Strategies.ps.Z

[4℄ D. Bert and R. Ehahed. Design and implementation of a generi, logi and

funtional programming language. In ESOP-86, pages 119{132. Springer LNCS

213, 1986.

[5℄ N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,

Handbook of Theoretial Computer Siene B: Formal Methods and Semantis,

hapter 6, pages 243{320. North Holland, Amsterdam, 1990.

[6℄ D. Genius. Sequential implementation of parallel narrowing. In Pro. JICSLP'96

Workshop on Multi-Paradigm Logi Programming, pages 95{104. TU Berlin,

Tehnial Report No. 96-28, 1996.

[7℄ E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: a logi

plus funtional language. Journal of Computer and System Sienes, 42:139{

185, 1991.

[8℄ M. Hanus. Compiling logi programs with equality. In Pro. of the 2nd Intl.

Workshop on Programming Language Implementation and Logi Programming,

pages 387{401. Springer LNCS 456, 1990.

[9℄ M. Hanus. Combining lazy narrowing and simpli�ation. In Pro. of the 6th

Intl. Symp. on Programming Language Implementation and Logi Programming,

pages 370{384. Springer LNCS 844, 1994.

[10℄ M. Hanus. The integration of funtions into logi programming: From theory

to pratie. Journal of Logi Programming, 19&20:583{628, 1994.

[11℄ G. Huet and J.-J. L�evy. Computations in orthogonal term rewriting systems.

In J.-L. Lassez and G. Plotkin, editors, Computational logi: essays in honour

of Alan Robinson. MIT Press, 1991.

[12℄ J.-M. Hullot. Canonial forms and uni�ation. In Pro. 5th Conferene on

Automated Dedution, pages 318{334. Springer LNCS 87, 1980.

[13℄ J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and

T. Maibaum, editors, Handbook of Logi in Computer Siene, Vol. II, pages

1{112. Oxford University Press, 1992.

[14℄ J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting

systems. Journal of Symboli Computation, pages 161{195, 1991.

[15℄ H. Kuhen, J.J. Moreno-Navarro, and M.V. Hermenegildo. Independent and-

parallel implementation of narrowing. In Pro. of the 4th Intl. Symp. on

Programming Language Implementation and Logi Programming, pages 24{38.

Springer LNCS 631, 1992.

[16℄ R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A demand driven

omputation strategy for lazy narrowing. In Pro. of the 5th Intl. Symp. on

Programming Language Implementation and Logi Programming, pages 184{

200. Springer LNCS 714, 1993.

[17℄ R. Loogen and S. Winkler. Dynami detetion of determinism in funtional logi

languages. Theoretial Computer Siene 142, pages 59{87, 1995.

[18℄ J. J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi programming with

funtions and prediates: The language BABEL. Journal of Logi Programming,

12:191{223, 1992.

[19℄ M. J. O'Donnell. Computing in Systems Desribed by Equations. Springer LNCS

58, 1977.

[20℄ U. S. Reddy. Narrowing as the operational semantis of funtional languages. In

Pro. IEEE Intl. Symp. on Logi Programming, pages 138{151, Boston, 1985.

[21℄ R. C. Sekar and I. V. Ramakrishnan. Programming in equational logi: Beyond

strong sequentiality. Information and Computation, 104(1):78{109, May 1993.

15

