
Functional Logic Program Transformations

Michael Hanus1 and Steven Libby2

1 Institut für Informatik, Kiel University, Kiel, Germany
mh@informatik.uni-kiel.de

2 University of Portland, Portland, Oregon, U.S.A.
libbys@up.edu

Abstract. Many tools used to process programs, like compilers, analyz-
ers, or verifiers, perform transformations on their intermediate program
representation, like abstract syntax trees. Implementing such program
transformations is a non-trivial task, since it is necessary to iterate over
the complete syntax tree and apply various transformations at nodes in a
tree. In this paper we show how the features of functional logic program-
ming are useful to implement program transformations in a compact and
comprehensible manner. For this purpose, we propose to write program
transformations as partially defined and non-deterministic operations.
Since the implementation of non-determinism usually causes some over-
head compared to deterministically defined operations, we compare our
approach to a deterministic transformation method. We evaluate these
alternatives for the functional logic language Curry and its intermediate
representation FlatCurry which is used in various analysis and verifica-
tion tools and compilers.

1 Introduction

Program transformation is a very old idea in computer science, dating all the
way back to McCarthy [22]. It has proved to be an important tool in program
analysis, verification, and compilation. Functional and logic languages in partic-
ular have seen many examples of harnessing program transformation to perform
complex tasks. Peyton Jones demonstrated how a Haskell compiler could be con-
structed as a sequence of program transformations [27] and how optimizations
could be implemented as more program transformations. [25]. Appel provided
several examples of program transformations to construct an ML compiler [8]
including transforming the AST into CPS form and several optimizations. Flana-
gan et al’s original formulation of A-normal form was given as a set of rewrite
rules [10], and Peyton Jones et al. showed how general rewriting can be useful
for easily implementing optimizations [26]. Many optimizations are presented
as simple program transformations. For example, Gill’s shortcut deforestation
[11], inlining and beta reduction [24], as well as more complex optimizations like
partial evaluation [19].

Functional logic languages such as Curry3 also take advantage of program
transformations. The RICE compiler is implemented as a series of program trans-

3 https://www.curry-lang.org/

https://www.curry-lang.org/

formations [21]. Hanus also showed how program transformations can be used
to simplify the verification of Curry programs [14]. Peemöller’s partial evaluator
also uses several program transformations [16].

Although the theory of transformations is usually presented as a simple and
elegant way to work with complex structures, the reality is usually much more
complex. For example, the A-normal from transformation [10] is given as a set
of three rewrite rules with an evaluation context. However, the actual imple-
mentation is a half a page of Scheme code using a moderately complex function
to build up a continuation to perform the rewrite. While it is remarkable that
the implementation is only a half page, it has lost the readability of the original
rewrite rules. This is a reoccurring theme in program analysis and compilers.
The program transformations in the GHC compiler are often long inscrutable
functions that bear little resemblance to the transformation they implement.

In this paper, we show how features from functional logic programming can
be used to represent transformations in a modular, composable way. The sec-
tions that follow review functional logic programming and Curry, describe its
intermediate representation called FlatCurry, introduce our approach to defin-
ing transformations, examine their results, and conclude.

2 Functional Logic Programming with Curry

The declarative language Curry [18] supports features from functional program-
ming (demand-driven evaluation, strong typing, higher-order functions) as well
as from logic programming (computing with partial information, unification,
constraints), see [5,13] for surveys. The syntax of Curry is close to Haskell [23].
In addition to Haskell, Curry applies rules with overlapping left-hand sides in a
(don’t know) non-deterministic manner (where Haskell always selects the first
matching rule) and allows free (logic) variables in conditions and right-hand
sides of defining rules. The operational semantics is based on demand-driven
evaluation which is optimal for large classes of programs [3].

Similarly to Haskell, Curry is strongly typed so that a program consists of
data type definitions defining the constructors of these types and functions or
operations on these types. The following simple example defines the concatena-
tion operation “++” on lists and an operation adjDup which returns an adjacent
duplicate number in a list:4

(++) :: [a] → [a] → [a] adjDup :: [Int] → Int

[] ++ ys = ys adjDup xs | xs =:= _ ++ [x,x] ++ _

(x:xs) ++ ys = x : (xs ++ ys) = x where x free

adjDup exploits the unification operator “=:=” which instantiates free variables
when both expressions are evaluated and unified. adjDup is also called a non-
deterministic operation since it might deliver more than one result for a fixed

4 To check some unintended errors, Curry requires the explicit declaration of free
variables, as x in the rule of adjDup. This is not necessary for anonymous variables
which are denoted by an underscore.

2

argument, e.g., adjDup [1,2,2,1,3,3,4] yields 2 and 3. Non-deterministic opera-
tions, which are interpreted as mappings from values into sets of values [12], are
an important feature of contemporary functional logic languages. One particu-
larly important operation is the choice operator “?” which non-deterministically
returns one of its two arguments. As we will see, such operations are useful to
specify program transformations in a compact manner.

The operation adjDup is reducible if the actual argument has the form as
specified in the right-hand side of the condition’s equation. For such cases, Curry
supports a more compact notation:

adjDup’ :: [Int] → Int

adjDup’ (_ ++ [x,x] ++ _) = x

Since the pattern used in adjDup’ contains the defined function “++”, it is called a
functional pattern. A functional pattern denotes all standard patterns to which
the functional pattern can be evaluated. Functional pattern matching can be
efficiently implemented by a specific unification procedure [4]. Functional pat-
terns can express pattern matching at arbitrary depths so that they are useful
to specify program transformations.

Functional patterns can be supported in Curry due to its logic programming
features, i.e., the ability to deal with non-deterministic and failing computations.
To control non-deterministic computations and failures, Curry supports encap-
sulated search operators which return all or some values of an expression. In this
paper, we use only the search operator

oneValue :: a → Maybe a

which returns Nothing if the argument has no value, otherwise Just some value.5

3 FlatCurry: An Intermediate Represention for Curry
Programs

Curry has many more features than described in the previous section, like type
classes, monadic I/O, modules, etc. To avoid the consideration of all these fea-
tures in language processing tools for Curry (compilers, analyzers,. . .), such tools
often use an intermediate language where the syntactic sugar of the source lan-
guage has been eliminated and the pattern matching strategy is explicit. This
intermediate language is called FlatCurry and will be the basis of example pro-
gram transformations described in this paper so that we describe it in more
detail. Apart from compilers, FlatCurry has been used to specify the opera-
tional semantics of Curry programs [1], to implement a modular framework for
the analysis of Curry programs [17], or to verify non-failing properties of Curry
programs [14].

5 The precise selection of the value is unspecified so that the operation is considered
unsafe (there are also other more complex declarative encapsulation operators in
Curry). Since we are not interested in the confluence of program transformations,
this slightly non-declarative behavior is acceptable.

3

P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| f(e1, . . . , en) (function/constructor application)
| e1 or e2 (disjunction)
| let x1, . . . , xn free in e (free variables)
| let x = e in e′ (let binding)
| case e of {p1 → e1; . . . ; pn → en} (case expression)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax of the intermediate language FlatCurry

Figure 1 summarizes the abstract syntax of FlatCurry. A FlatCurry pro-
gram consists of a sequence of function definitions (we omit data type defini-
tions here), where each function is defined by a single rule. Patterns in source
programs are compiled into case expressions and overlapping rules are joined
by explicit disjunctions. The patterns in each case expression are required to be
non-overlapping.

Any Curry program can be transformed into this format [2,7]. In particular,
the front end of a Curry compiler transforms source programs into FlatCurry
programs so that FlatCurry is the intermediate language of many Curry compil-
ers. Therefore, it is a reasonable target for program transformations that simplify
or optimize Curry programs.

For instance, consider the following operation to insert an element at an
arbitrary position into a list:

insert :: a → [a] → [a]

insert x ys = x : ys

insert x (y:ys) = y : insert x ys

This definition, which has overlapping rules, can be transformed into the FlatCurry
definition (where we use the standard list notation)

insert(x,xs) = x : xs

or case xs of { y:ys → y : insert(x,ys) }

In order to process FlatCurry programs inside Curry programs, there is a Curry
package flatcurry6 defining data types to represent FlatCurry programs and
operations to read Curry programs and returning the equivalent FlatCurry pro-
gram as terms of these data types. To understand the transformation examples
discussed later, we show the data types to represent FlatCurry expressions. In
order to distinguish the different kinds of applications, the following type is used:

data CombType = FuncCall | ConsCall

| FuncPartCall Int | ConsPartCall Int

6 https://cpm.curry-lang.org/pkgs/flatcurry.html

4

https://cpm.curry-lang.org/pkgs/flatcurry.html

Hence, FuncCall and ConsCall are used in applications of functions and con-
structors, respectively, whereas FuncPartCall and ConsPartCall are used in par-
tial applications where the integer argument specifies the number of missing
arguments. Then FlatCurry expressions are represented by the following types
(for the sake of readability, this definition is slightly simplified compared to the
actual flatcurry package):

data Expr

= Var Int

| Comb CombType String [Expr]

| Or Expr Expr

| Free [Int] Expr

| Let (Int, Expr) Expr

| Case Expr [BranchExpr]

data BranchExpr = Branch Pattern Expr

data Pattern = Pattern String [Int]

Note that variables are represented as unique integers. For instance, consider the
Boolean negation operation not. Its FlatCurry definition is

not(x) = case x of { False → True ; True → False }

Its right-hand side expression is represented by the following data term (where
variable x has the index 0)::

Case (Var 0)

[Branch (Pattern "False" []) (Comb ConsCall "True" []),

Branch (Pattern "True" []) (Comb ConsCall "False" [])]

The prelude operation “$”, defined by

($) :: (a → b) → a → b

f $ x = f x

is an infix application operator often used to write applications without paren-
theses. The Curry expression “not $ not True” is represented as the following
data term:

Comb FuncCall "$" [Comb (FuncPartCall 1) "not" [],

Comb FuncCall "not" [Comb ConsCall "True []]]

In the next section we discuss a program transformation to simplify this expres-
sion by removing the call to “$”.

4 Transformations on FlatCurry Programs

Now that we have a structure to transform Curry programs, we can define meth-
ods to transform them.

4.1 Functional logic transformations

In order to simplify the development of program transformations, we would like
a simple, composable way to represent a single transformation. With this repre-

5

orFloat (Or (Let vs e1) e2) = Let vs (Or e1 e2)

orFloat (Or e1 (Let vs e2)) = Let vs (Or e1 e2)

Fig. 2. Transformation: float a let expression out of a choice expression

unDollar (dollar f args miss x)

| miss == 1 = Comb FuncCall f (args++[x])

| miss > 1 = Comb (FuncPartCall (miss-1)) f (args++[x])

dollar f args miss x = Comb FuncCall "$"
[Comb (FuncPartCall miss) f args, x]

Fig. 3. Transformaton: remove a call to “$” in an expression

sentation, we can separate the logic for traversing a FlatCurry expression from
the transformation itself. The most natural option is to represent a transfor-
mation as a function on FlatCurry expressions. We allow our transformations
to be both non-deterministic and partial. For instance, we want to implement
a transformation which moves a local let binding out of a choice. This can be
expressed by the following transformation rules:

(let x = e in e1) ? e2 ⇒ let x = e in (e1 ? e2)
e1 ? (let x = e in e2) ⇒ let x = e in (e1 ? e2)

This transformation is correct under the assumption that local variables always
have distinct identifiers (which is ensured by the Curry front end). The imme-
diate implementation in Curry is shown in Figure 2. Note that orFloat fails on
non-matching arguments and is overlapping on the expression

(let x = 1 in x) ? (let y = 1 in y)

The non-determinism is not an issue here because both rules will apply eventually
and the order of application does not matter. This allows us to avoid encoding
unnecessary control flow information when it is not important.

Non-determinism also allows us to use functional patterns in transformation
rules. The undollar example in Figure 3 implements the transformation

f $ x ⇒ f x

The operation dollar abbreviates a FlatCurry expression which is an applica-
tion of “$” where the first argument is a partially applied function (and not
a variable or another expression). The use of dollar as a pattern in unDollar

shows how functional patterns can be used to improve the readability of trans-
formations. While we could have specified the entire pattern for the application
of the “$” function in the definition of unDollar, the functional pattern makes
the transformation clearer.

We also allow transformations to be partial functions. This means that a
transformation may not apply in all cases. This is not an issue. If the transfor-
mation fails to apply, we ignore it and move to the next one. This is particularly

6

caseCancel (Case (Comb ConsCall c []) (withBranch c e)) = e

withBranch c e = (_ ++ [Branch (Pattern c []) e] ++ _)

Fig. 4. Case canceling transformation for constructors with no arguments.

helpful when we need to search for a specific subexpression such as in the case
canceling example in Figure 4 which implements the following transformation:

case C of {. . . ;C → e; . . .} ⇒ e

We use a functional pattern to find the specific branch that contains the value
of the scrutinee of the case. Requiring this function to be total would necessitate
searching through the cases manually until we find one or signal a failure if one
is not found.

A more subtle use of partial transformations occurs in the undollar example
in Figure 3. If the function f is a partial application with 0 arguments missing,
then we should not turn it into a partial call expecting -1 arguments. By omitting
this case, we have neatly sidestepped this issue.

So far, our transformations have the type Expr → Expr. While this is sufficient
for simple transformations, it is helpful to augment this type with extra informa-
tion used by more complex transformations. Thus, we add a further argument
consisting of the index of the next fresh variable available for use and the path
to the current subexpression we are transforming (expressed by the type Path

which is a type synonym for a list of integers). This allows us to generate new
variables as needed, and determine useful information such as whether we are at
the root of right-hand side expression.

In addition to the transformed expression, a transformation also returns the
number of fresh variables used in the transformed expression. This allows us to
keep track of the next fresh variable efficiently. Thus, the full type of a general
expression transformation is

type ExprTransformation = (Int, Path) → Expr → (Expr,Int)

We can lift a simple transformation of type Expr → Expr to ExprTransformation

with the function

makeT :: (Expr → Expr) → ExprTransformation

makeT f = _ e → (f e, 0)

Finally, our transformation library provides an operation (its implementation is
discussed in Sect. 4.3)

transformExpr :: (() → ExprTransformation) → Expr → Expr

which applies a transformation repeatedly until no more transformations can be
applied. To avoid committing to a specific choice of a non-deterministic trans-
formation too early, the transformation is not passed as a constant but as a
function which takes a dummy unit argument of type ().

Individual transformations such as unDollar or orFloat can be useful, but the
real power of this system comes from composability. We support two types of

7

composition. Serial composition is applying one transform after another, while
parallel composition applies both transforms at the same time. In our approach,
applying transformations in series is just function composition: for instance, ap-
plying first transformation t1 and afterwards transformation t2 can be expressed
in Curry with the function composition operator “.” by

transformExpr (\() → t2) . transformExpr (\() → t1)

The parallel composition of t1 and t2, i.e., applying both transformations t1

and t2 whenever possible, can be expressed by

transformExpr (\() → t1 ? t2)

This composition is expressive and gives us control over how we execute our
transformations. For example, we may want to float all of the let expressions out
of a choice before we remove all “$” applications and cancel simple cases. This
can be expressed by

transformExpr (\() → makeT unDollar ? makeT caseCancel) .

transformExpr (\() → makeT orFloat)

4.2 Purely functional transformations

Separation of concerns and composability are powerful tools in our system. How-
ever, we may wish to avoid all non-determinism in a program transformation.
Although this sacrifices convenience, we can still support composition with total
deterministic functions.

Deterministic transformations must be totally defined so that they have type
Expr → Maybe Expr . A successful transformation returns Just e, where a fail-
ing transformation returns Nothing.

The caseCancelDET example below shows the changes we need to make to
define a deterministic transformation. Functional patterns are replaced with total
case expressions. However, because we need to find the branch in a list, we need
to write an auxiliary function to find the correct branch. The case expressions
ensure that pattern matching is done in sequence so we do not have overlapping
patterns.

caseCancelDET e = case e of

Case (Comb ConsCall c []) bs → find c bs

_ → Nothing

where find _ [] = Nothing

find c (Branch (Pattern p vs) e : bs)

| c == p && null vs = Just e

| otherwise = find n bs

To apply a deterministic transformation repeatedly to all subexpressions until
no more transformation is possible, our library provides an operation

transformExprDet :: ExprTransformation → Expr → Expr

Note that the unit argument used in transformExpr is not necessary since the
transformation argument is always deterministic.

8

Sequential composition is unchanged from the previous version, but we need
a new operator for parallel composition. The <?> operator tries one transforma-
tion, and falls back on the second if the first transformation fails.

t1 <?> t2 = \env e → case t1 env e of

Nothing → t2 env e

answer → answer

With this new composition operator, we can define a deterministic version of
our previous transformation with the following (where we omit the definition of
the deterministic versions of unDollear and orFloat):

transformExprDet (makeT unDollarDet <?> makeT caseCancelDet) .

transformExprDet (makeT orFloatDet)

4.3 Transformation strategies

In order to apply the transformation rules shown so far to arbitrary subexpres-
sions of an expression (typically, the right-hand side of a function definition), we
need a transformation engine. This is the job of the operation transformExpr. To
evaluate our framework, we use three different strategies for applying transfor-
mations which are sketched in the following.

The first is the chaotic strategy (CS). This strategy non-deterministically se-
lects a subexpression, tries to apply a transformation on this subexpression, and,
if possible, replaces it by the result of the transformation This is similar to the
deep selection pattern [6]. When applying a transformation rule to the selected
subexpression, the operation oneValue is used to check whether a transformation
is applicable and to ensure that only one replacement is performed. This is the
easiest way to implement but might be inefficient for large programs.7

The second strategy is the deterministic strategy (DS). This strategy tra-
verses the expression in a bottom-up fashion, while attempting to apply a purely
functional transformation at each subexpression. If it applies, the subexpression
is replaced and we try again, otherwise we move on.

The final strategy is a combination of the two that we call the mixed strategy
(MS). This strategy still traverses the syntax tree in a bottom up manner, but
non-deterministic transformation rules are applied at each step where oneValue is
used to force the result to be deterministic. This improves on the chaotic strategy
because we do not need to recompute the path every time a transformation
applies.

With a framework for creating, composing, and applying transformations, we
turn our attention to evaluating the effectiveness of the different strategies. We
assess both the performance as well as the development cycle for transformations.

7 An implementation of this strategy in Curry is shown in Appendix A.

9

PAKCS KiCS2
Module Size Funcs Trans CS MS DS CS MS DS

Prelude 72485 1285 3 955 1494 321 795 306 148
Data.Char 2190 9 0 22 49 7 18 7 4
Data.Either 1693 11 0 3 3 1 1 1 1
Data.List 14841 87 0 54 65 20 24 18 9
Data.Maybe 1809 9 0 4 6 1 3 2 1
Numeric 3494 7 4 9 18 4 17 17 2
System.Console.GetOpt 17328 47 0 66 119 21 38 23 11
System.IO 6223 51 0 15 19 7 5 5 3

Table 1. Transforming standard libraries with the transformations of Sect. 4.1

5 Benchmarks

We have presented different methods to implement transformations in a declar-
ative language. Functional logic transformations exploit partially defined non-
deterministic operations to specify transformations in a comprehensible manner
and avoid superfluous code for non-matching cases. Their actual implementa-
tion demands for logic programming features like controlling failures and non-
determinism via encapsulated search. In contrast, purely functional transfor-
mations require the encoding of all cases in a deterministic manner but their
implementation does not require logic programming features. Since the use of
logic features requires some additional efforts at run time, it is interesting to
know about the price to pay for supporting compact and comprehensible trans-
formation specifications. Therefore, we evaluate the approaches discussed above
in this section.

We implemented the chaotic, mixed, and deterministic transformation strate-
gies in Curry so that the transformation rules can be written as shown above.
In particular, transformations written in a functional logic style can be used for
both the chaotic and mixed strategy, whereas the deterministic strategy requires
the more complex style of deterministic transformations in the form of totally
defined operations.

In the first set of benchmarks, we applied all three transformation rules shown
in Sect. 4.1 to various standard libraries contained in Curry distributions. For
each module, Table 1 shows the size of the Curry source file, the number of
defined functions in the corresponding FlatCurry program (note that the trans-
formations are applied to the right-hand side of each function), the number of
transformations performed in the module, and the time (in milliseconds) to ap-
ply the various strategies described in Sect. 4.3.8 Furthermore, we executed the
benchmarks with the Curry implementations PAKCS [15], which compiles into
Prolog, and KiCS2 [9], which compiles into Haskell. Since the standard libraries
evolved over years so that superfluous pieces of code are avoided, there are only

8 We measured the transformation times on a Linux machine running Ubuntu 22.04
with an Intel Core i7-1165G7 (2.80GHz) processor with eight cores.

10

PAKCS KiCS2
Module Size Funcs Trans CS MS DS CS MS DS

Prelude 72485 1285 5779 39339 77830 3042 15660 5272 2740
Data.Char 2190 9 163 1358 3189 90 365 86 76
Data.Either 1693 11 12 6 10 2 2 3 3
Data.List 14841 87 237 481 870 70 117 61 56
Data.Maybe 1809 9 29 103 175 13 39 11 11
Numeric 3494 7 47 54 93 9 10 8 6
System.Console.GetOpt 17328 47 418 1483 2566 139 331 126 108
System.IO 6223 51 89 50 89 15 9 11 9

Table 2. Transforming standard libraries to A-normal form

a few transformations which can be applied. Thus, this benchmark mainly evalu-
ates the time to try to apply transformations at all positions in a program w.r.t.
different strategies.

As one can expect, the deterministic transformation strategy is the fastest.
However, the times with the mixed strategy are not so much worse. Thus, there is
no need to rewrite functional logic transformations into the more complex purely
deterministic style, in particular, if an efficient Curry implementation like KiCS2
is used. It is also interesting that the chaotic strategy is faster than the mixed
strategy when it is executed with PAKCS.. The reason is unclear but it should
be noted that Prolog has a direct support for non-determinism whereas KiCS2
explicitly implements non-determinism via search tree structures.

In order to get an impression for the transformation behavior when many
transformations can actually be applied, we tested our implementation with
a transformation of FlatCurry programs into their A-Normal Form (ANF) [10].
ANF requires that operations or constructors are only applied to variables. ANF
is used in many compilers and also in the specification of operational semantics
for functional [20] and functional logic [1] programs. The ANF transformation
replaces non-variable arguments by fresh variables which are introduced in let
bindings. For instance, the A-Normal Form of the operation insert defined in
Sect. 3 is

insert(x,xs) = x : xs

or case xs of { y:ys → let z = insert(x,ys)

in y : z }

The functional logic ANF transformation basically consists of a single rule which
replaces a non-variable argument by a new variable and the corresponding let
binding. On the other hand, the purely functional ANF transformation has to
implement the same transformation but must also consider all other expressions
in order to avoid a failure.

The results of applying the ANF transformation to the set of standard li-
braries are shown in Table 2. The run times indicate that the differences be-
tween the non-deterministic and the deterministic transformation can get larger
when many transformations are applicable, which is the case for the Prolog-

11

based PAKCS compiler. However, for the more efficient Haskell-based KiCS2
compiler, the differences are not so high, in particular, when the mixed strategy
is used instead of the chaotic strategy. Since the same transformation rules can
be used for both strategies, the mixed strategy can always be preferred. Tak-
ing into account that functional logic transformations are easier to implement,
the differences in the absolute timings are acceptable when an efficient Curry
system, like KiCS2, is used.

6 Conclusions

In this paper we presented methods to implement program transformations in a
declarative manner. Our examples target the intermediate language FlatCurry
but similar transformations can be written for other languages if their abstract
syntax trees are represented as data terms. Although such transformations can be
implemented in any programming language, we showed that the functional logic
programming features of Curry are useful to write compact and comprehensible
transformations so that the implemented code is quite similar to specifications
of such transformations. The definition of transformations as partially defined
and non-deterministic operations avoids writing superfluous code to control the
transformations.

Qualitatively, our system for program transformations offers several advan-
tages to writing the transformations by hand. One of the most significant benefits
is that the transformations are written entirely in Curry. There is no new lan-
guage to learn or tool to install. Instead, each transformation is a Curry function.
This allows Curry developers to write complex transformations without needing
to learn a new system. Developers with experience in functional languages can
typically understand a transformation with limited explanation.

Another advantage is that transformations are extensible. Because trans-
formations are Curry functions, we can make them as complex as necessary.
Transformations are not restricted to being simple rewrite rules, but can involve
arbitrary computations. Transformations can be extended to handle additional
information. For example, a beta-reduction transformation can take a map con-
taining information about previously seen functions. We simply add another
parameter to the transformation.

A third advantage is that our system can easily be extended to report which
transformations are applied. By supplying a name to each transformation, it
becomes easy to reconstruct the entire transformation derivation. This is an
important tool for debugging transformations. It enables developers to see how
expressions evolved from the original form to the final result, which is often
difficult when working with several transformations.

Our system has been used extensively in the RICE compiler [21] to imple-
ment complex transformations including conversion to A-normal form, variable
inlining, and beta-reduction. Development of these optimizations was usually
straightforward, and we were able to see how the optimizations interacted with

12

one another. It also made it easier to modify the optimizations to make them
more effective.

Our system provides a convenient, concise method of specifying program
transformations entirely in Curry. By allowing both partial and non-deterministic
operations, we are able to focus on the transformations themselves. This system
is extensible and has been proven effective in large programs like the RICE
compiler.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

2. S. Antoy. Constructor-based conditional narrowing. In Proc. of the 3rd Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001), pages 199–206. ACM Press, 2001.

3. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

4. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

5. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

6. S. Antoy and M. Hanus. New functional logic design patterns. In 20th International
Workshop on Functional and (constraint) Logic Programming (WFLP 2011), pages
19–34, Odense, Denmark, 2011. Springer LNCS 6816.

7. S. Antoy, M. Hanus, A. Jost, and S. Libby. ICurry. In Declarative Programming and
Knowledge Management - Conference on Declarative Programming (DECLARE
2019), pages 286–307. Springer LNCS 12057, 2020.

8. A. Appel. Compiling with Continuations. Cambridge University Press, New York,
NY, USA, 2007.

9. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from
Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS 6816,
2011.

10. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of Compiling
with Continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, PLDI ’93, pages 237–247,
1993.

11. A. Gill, J. Launchbury, and S. L. Peyton Jones. A Short Cut to Deforestation. In
Proceedings of the Conference on Functional Programming Languages and Com-
puter Architecture, FPCA ’93, pages 223–232, New York, NY, USA, 1993.

12. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

13. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

13

14. M. Hanus. Inferring non-failure conditions for declarative programs. In Proc. of
the 17th International Symposium on Functional and Logic Programming (FLOPS
2024), pages 167–187. Springer LNCS 14659, 2024.

15. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, F. Steiner, and F. Teegen. PAKCS: The Portland Aachen Kiel Curry
System. Available at https://www.curry-lang.org/pakcs/, 2025.

16. M. Hanus and B. Peemöller. A partial evaluator for Curry. In Proc. of the 23rd In-
ternational Workshop on Functional and (Constraint) Logic Programming (WFLP
2014), pages 55–71. Universität Halle-Wittenberg, 2014.

17. M. Hanus and F. Skrlac. A modular and generic analysis server system for func-
tional logic programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM’14), pages 181–188. ACM Press,
2014.

18. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-lang.org, 2016.

19. N. Jones, C. Gomard, and P. Sestoft. Partial evaluation and automatic program
generation. Prentice-Hall, Inc., USA, 1993.

20. J. Launchbury. A natural semantics for lazy evaluation. In Proc. 20th ACM
Symposium on Principles of Programming Languages (POPL’93), pages 144–154.
ACM Press, 1993.

21. S. Libby. RICE: An optimizing Curry compiler. In 25th International Symposium
Practical Aspects of Declarative Languages (PADL 2023), pages 3–19. Springer
LNCS 13880, 2023.

22. J McCarthy. A basis for a mathematical theory of computation, preliminary re-
port. In Papers Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM
Computer Conference, page 225–238, New York, NY, USA, 1961. Association for
Computing Machinery.

23. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

24. S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler Inliner.
J. Funct. Program., 12(5):393–434, July 2002.

25. S. Peyton Jones and A. Santos. A transformation-based optimiser for Haskell.
Science of Computer Programming, 32(1), October 1997.

26. S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting as a
practical optimisation technique in GHC. Haskell 2001, 04 2001.

27. S.L. Peyton Jones. Compiling Haskell by program transformation: A report from
the trenches. In Proc. ESOP’96, pages 18–44. Springer LNCS 1058, 1996.

14

https://www.curry-lang.org/pakcs/
http://www.curry-lang.org

A Implementation of the Chaotic Strategy

In the following we show the implementation of the chaotic transformation strat-
egy in Curry. First, we define the non-deterministic operation subExpOf which
returns, for a given FlatCurry expression, some subexpression and its path (a
list of integers representing argument positions counted from zero).

subExpOf :: Expr → (Path,Expr)

subExpOf e = ([],e) -- the subexpression is the entire expression

subExpOf (Comb _ _ args) =

uncurry extendPath $ anyOf (zip [0..] (map subExpOf args))

subExpOf (Let (_,e) _) = extendPath 0 (subExpOf e)

subExpOf (Let _ e) = extendPath 1 (subExpOf e)

subExpOf (Free _ e) = extendPath 1 (subExpOf e)

subExpOf (Or e1 e2) =

extendPath 0 (subExpOf e1) ? extendPath 1 (subExpOf e2)

subExpOf (Case ce _) = extendPath 0 (subExpOf ce)

subExpOf (Case _ bs) = uncurry extendPath $
anyOf (zip [1..] (map (subExpOf . branchExp) bs))

where branchExp (Branch _ be) = be

The auxiliary operation extendPath extends the path component by one position:

extendPath :: Int → (Path,Expr) → (Path,Expr)

extendPath pos (p,e) = (pos:p, e)

Now we can define the chaotic strategy as the operation transformExpr which
simplifies a FlatCurry expression by iteratively applying the given transforma-
tion rule to some subexpression. Thus, a transformation step is implemented
by selecting a subexpression with subExpOf where a rule can be applied (im-
plemented by the local operation tryTransExpr). To make the overall strategy
deterministic and non-failing, we control the transformation with oneValue. The
operation newVar returns the next fresh variable not occurring in an expression,
and the operation replace replaces a subexpression in an expression at the given
position (its definition is a similar case distinction as in subExpOf).

transformExpr :: (() → ExprTransformation) → Expr → Expr

transformExpr trans n e = runTrExpr trans (newVar e) e

runTrExpr :: (() → ExprTransformation) → Int → Expr → Expr

runTrExpr trans nvar exp =

case oneValue (tryTransExpr nvar exp) of

Nothing → exp -- no transformation applicable

Just (p, (e’,nvs)) → runTrExpr trans (nvar+nvs)

(replace exp p e’)

where

tryTransExpr v e = let (p,se) = subExpOf e

in (p, trans () (v,p) se)

15

	Functional Logic Program Transformations

