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Programming: A trivial task?

Traditional programming has many pitfalls
Compute the factorial of a natural number:

function fac(n:nat):nat =
begin

z:=1; p:=1;
while z<n+1 do
begin p:=p*z; z:=z+1 end;
return(p)

end

Potential errors:
counter initialization: z:=1 or z:=0 ?
loop condition: z<n+1 or z<n or z<=n ?
statement ordering: z:=z+1 before or after p:=p*z ?
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Why programming? Why not ChatGPT, Copilot,. . . ?

Questions from worried parents of prospective students

Is it necessary to learn programming?

Or is it necessary to study computer science at all?
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David L. Parnas 1988 (INFOR 26(4), 234–246)

It is indeed a feature of AI programs that their authors do not know
what they will do, the field has made a virtue out of a vice.
. . .
The way humans solve problems is not usually the best way for a
machine to solve the same problem.

But now we have LLMs!
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ACM Technews, Reuters, July 10, 2025
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Reuters, July 10, 2025

Contrary to popular belief, using cutting-edge artificial intelligence
tools slowed down experienced software developers when they were
working in codebases familiar to them, rather than supercharging their
work, a new study found.
. . .
Before the study, the open-source developers believed using AI would
speed them up, estimating it would decrease task completion time by
24%. Even after completing the tasks with AI, the developers believed
that they had decreased task times by 20%. But the study found that
using AI did the opposite: it increased task completion time by 19%.
. . .
The slowdown stemmed from developers needing to spend time going
over and correcting what the AI models suggested.
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Why not prove code correctness with ChatGPT?

> Define a function to compute the last element of a list.

Certainly!
. . . long text omitted. . .

> Can you prove that this implementation is correct?

Certainly!
. . .
We can verify the correctness of the function by running various test cases to
cover different scenarios:
. . .
Here’s how we can implement these tests:
. . .
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Proving code correctness with ChatGPT, 2nd try

> Can you formally prove that this implementation is correct?
. . .
Let’s formally prove correctness using mathematical induction on the length
of the list.

Base Case: List of length 1
. . .

Inductive Hypothesis: Assume that for a list of length n. . .

Inductive Step:
. . .
informal explanation without using inductive hypothesis!
. . .

Problem: no formal claim to prove, i.e., what is the last element?
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Apple Research, June 2025

LLMs seem to reason on small problem sizes
LLMs hallucinate on larger problems
ok for language-oriented tasks, but for reliable programming?

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 9



Developing trustworthy code

Reliable code: important but difficult to assure

Unit testing: find the right test cases

Property-based testing: formulate properties

Verification: formally prove properties

Property “last element of a list”
If we add a single element to some list, then this element is the last
element of the concatenated list.

Formally (“++” denotes list concatenation, [...] denotes lists):

∀xs,x: last (xs ++ [x]) = x

⇝ use this condition for property-based testing and verification
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Declarative programming

Property/definition “last element of a list”

∀xs,x: last (xs ++ [x]) = x

valid definition and, thus, executable in declarative programming!

Declarative programming:
describe/specify what is the problem to solve
do not write steps/statements how to solve the problem
main difference to imperative programming:

referential transparency: the value of an expression depends on the values
of subexpressions but not on evaluation time
substitution principle (replace equals by equals), no side effects

formalisms/logics to describe problems
lambda calculus⇝ functional programming (e.g., Haskell)
predicate logic ⇝ logic programming (e.g., Prolog)

amalgamate both⇝ Curry
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Declarative programming with Curry-lang.org

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 12



Declarative programming with Curry-lang.org

Curry = HaskellHaskell + non-determinism + free variables

Functional programming: factorial function
Mathematical definition:

fac(n) = 1 ∗ 2 ∗ · · · ∗ (n − 1) ∗ n
= fac(n − 1) ∗ n

Recursive/constructive definition:

fac(n) =
{

1 if n = 0
fac(n − 1) ∗ n if n > 0

Implementation in Haskell/Curry:
fac n | n == 0 = 1

| n > 0 = fac (n-1) * n
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Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

Typical scheme: define operations by case distinctions on data constructors

data Bool = False | True -- Boolean values

not :: Bool → Bool
not False = True
not True = False

Type of polymorphic lists: [τ] ≈ list with elements of type τ

data [a] = [] | a : [a]

List concatenation:
(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
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Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

Curry applies all (applicable) rules defining an operation

Non-deterministic list insertion:
insert :: a → [a] → [a]
insert x ys = x : ys
insert x (y:ys) = y : insert x ys

> insert 0 [1,2] ⇝ [0,1,2] ? [1,0,2] ? [1,2,0]

Some permutation of a list:
perm :: [a] → [a]
perm [] = []
perm (x:xs) = insert x (perm xs)

> perm [1,2,3] ⇝ [3,2,1] ? [3,1,2] ? [2,3,1] ?
[2,1,3] ? [1,3,2] ? [1,2,3]

Non-deterministic operation!
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Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

Free variable: unknown value

Unification (=:=): equality constraint with guessing/binding free variables

Last element of a given list:
last :: [Int] → Int
last ys | ys =:= xs ++ [x]

= x where xs,x free

Useful abbreviation: functional patterns
last :: [Int] → Int
last (xs ++ [x]) = x

Checking palindromes:
palindrome (xs ++ reverse xs) = "even"
palindrome (xs ++ [_] ++ reverse xs) = "odd"
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Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

+ encapsulated search

+ set functions

+ constraints

+ default rules

+ standard class Data (typing free variables)

+ generic (fair) search

+ determinism types (PPDP’25)

+ · · ·
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Semantics of declarative programs

High-level (declarative) semantics
specifies intended result values (of expressions)
unspecified: operational/implementation aspects (e.g., strategies)

Operational semantics
specifies computation strategy and computed values
reason about time (computation steps) and space

Both views should coincide!
. . . with well-defined restrictions (LP: compute general representatives of values)

Advantage:
programmer considers declarative view, abstract from operational aspects
analysis or verification tools use an appropriate view
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High-level semantics for Curry: CRWL

Constructor-based ReWriting Logic [González-Moreno et al. JLP’99]

execution-independent specification of possible values of expressions
values: variables (V) and data constructor (C) applications

To cover non-strict, non-deterministic operations:
partial values: values extended by ⊥ (undefined value)
(1:2:⊥ approximates 1:2:[], 1:2:3:[],. . . )

CRWL specifies approximation statements e↠ t

CRWL rules

x ↠ x x ∈ V e1 ↠ t1 · · · en ↠ tn
C e1 . . . en ↠ C t1 . . . tn

C ∈ C

e↠ ⊥
e1 ↠ θ(t1) · · · en ↠ θ(tn) θ(r)↠ t

f e1 . . . en ↠ t
f t1 . . . tn = r ∈ P
θ ∈ CSubst⊥

CSubst⊥: partial constructor substitutions
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Semantics of non-deterministic operations

Choice operation

x ? _ = x coin = 0 ? 1
_ ? y = y dup x = (x,x)

Values of (dup coin)
Call-time choice: values of arguments fixed before function call
⇝ (0,0) (1,1)

Run-time choice: values of arguments fixed when they are used
⇝ (0,0) (0,1) (1,0) (1,1)

Decision by language design:
run-time choice: computed value might depend on strategy
call-time choice: semantics with “least astonishment”,
can be implemented with call-by-value or call-by-need (sharing!)
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CRWL specifies call-time choice

x ↠ x x ∈ V e1 ↠ t1 · · · en ↠ tn
C e1 . . . en ↠ C t1 . . . tn

C ∈ C

e↠ ⊥
e1 ↠ θ(t1) · · · en ↠ θ(tn) θ(r)↠ t

f e1 . . . en ↠ t
f t1 . . . tn = r ∈ P
θ ∈ CSubst⊥

x ? _ = x coin = 0 ? 1
_ ? y = y dup x = (x,x)

To reduce (dup coin) by CRWL:
reduce argument coin to either 0 or 1 before reducing right-hand side of dup

CRWL rules contain a lot of guesses:
Apply ⊥-rule or another?
Which program rule and which θ to reduce a function?

⇝ use narrowing to avoid or delay these guesses
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Operational semantics: narrowing

Narrowing step: e ⇝p, l = r , σ σ(e[r ]p)
p : non-variable position in e

l = r : program rule (variant)
σ : most general unifier for e|p and l

⇝ no ⊥-guesses, no θ-guesses
⇝ guess rule and position p

Use a strategy to select narrowing position

Needed narrowing [JACM 2000]

constructive method to compute positions and specific unifiers
demand-driven (needed) strategy
originally defined on inductively sequential rewrite systems where all
rules of an operation can be organized in a (definitional) tree
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Definitional tree [Antoy’92]

nodes marked with patterns
consists of branch nodes (case distinction), rule nodes
contains all rules of a function, root with most general pattern

Addition on Peano numbers

data Nat = Z | S Nat

add Z y = y
add (S x) y = S (add x y)

add Z x2 = x2 add (S x) x2 = S(add x x2)

add x1 x2

�
�

��

Q
Q
QQ
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Definitional tree [Antoy’92]

Less-or-equal on Peano numbers

leq Z _ = True
leq (S _) Z = False
leq (S x) (S y) = leq x y

leq Z x2 = True leq (S x) x2

leq (S x) Z = False leq (S x) (S y) = leq x y

leq x1 x2

�
�

��

Q
Q
QQ

�
�

��

Q
Q
QQ

can be computed at compile time
guide strategy of needed narrowing
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Needed narrowing [JACM 2000]

Evaluate outermost function call (f e1 . . . en) (informal)
Find an argument i needed by all rules: if ei

function call: evaluate ei

constructor-rooted: select corresponding rules (and proceed)
variable: instantiate it to constructors needed by rules (and proceed)

Properties of needed narrowing
Sound: computed values are derivable by CRWL
Complete: any CRWL-value is an instance of some computed value
Optimal strategy:

1 No unnecessary steps: each step is needed, i.e., unavoidable for some value
2 Shortest derivations: derivations have minimal length (with sharing)
3 Minimal value set: any two distinct derivations compute independent values
4 Determinism: no guessing during evaluation of variable-free expressions

⇝ Consideration of evaluation details not necessary for reliable programming
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Declarative programming: intermediate summary

Trustworthy software is important

AI/LLMs can be a helpful component

reliable programs require precise descriptions/specifications

need to be provided by humans (“precise prompt engineering”)

declarative programming supports high-level executable specifications

can be used to test or verify more efficient implementations

Further advantage of declarative programming
case distinctions, no side effects ⇝ automatic analysis and verification

In the following:
contract verification
inference and verification of non-fail conditions

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 26



Contracts for Curry [PADL 2012]

Given: f :: τ1 → · · · → τn → τ

Contract for f : pre- and postcondition

Precondition:
f’pre :: τ1 → · · · → τn → Bool

Postcondition:
f’post :: τ1 → · · · → τn → τ → Bool

Dynamic contract checking
Curry preprocessor transforms contracts into dynamic checks:

precondition⇝ check arguments before each call
postcondition⇝ check arguments/result after evaluation

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 27



Contract verification [LOPSTR 2017, FI 2020]

Verify contracts at compile time ⇝ omit run-time checking, improve trust

Factorial operation with contract:

fac n = if n==0 then 1
else n * fac (n-1)

fac’pre n = n >= 0
fac’post n f = f > 0

Verify precondition of recursive fac call:
n>=0 (by precondition)
¬(n==0) (since else branch is chosen)
n>=0 ∧ ¬(n==0) =⇒ (n-1)>=0 (by SMT solver)

⇝ precondition of recursive call always satisfied, omit run-time check
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Contract verification

Verifying postcondition

fac n = if n==0 then 1
else n * fac (n-1)

fac’post n f = f > 0

Consider value of right-hand side:
1 then branch: 1 > 0⇝ postcondition satisfied
2 else branch:
n>=0 (by precondition)
¬(n==0) (since else branch is chosen)
fac(n-1)>0 (by postcondition)
n>=0 ∧ ¬(n==0) ∧ fac(n-1)>0 =⇒ n*fac(n-1)>0 (by SMT)
⇝ postcondition satisfied

Altogether: postcondition always satisfied, omit run-time checks
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Contract verification: number summation

Number summation

sum :: Int → Int
sum n = if n==0 then 0

else n + sum (n-1)

sum’pre n = n >= 0
sum’post n f = f == n * (n+1) ‘div‘ 2

Contract verifier:
precondition of recursive call satisfied
postcondition satisfied

⇝ fully automatic verification of postcondition (proof of Gauss’ formula)
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Contract verification: implementation

Assertion-collecting semantics [LOPSTR 2017, FI 2020]

1 compute with symbolic values instead of concrete ones
2 collect properties that are known to be valid
3 do not evaluate functions but collect their pre- and postconditions

Use SMT solver (Z3) to verify collected assertions:
if verifiable, omit dynamic contract check

. . . to make it feasible on Curry programs:
compile Curry programs into simpler intermediate language: FlatCurry
remove local declarations by lambda lifting
translate complex patterns into case/or expressions
standard Curry front end produces FlatCurry programs
(used by interpreters, compilers, and other tools)
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FlatCurry

Abstract syntax of FlatCurry
D ::= f (x1, . . . , xn) = e (function definition)

e ::= x (variable)
| c(e1, . . . ,en) (constructor call)
| f (e1, . . . ,en) (function call)
| case e of {p1 → e1; . . . ;pn → en} (case expression)
| e1 or e2 (disjunction)
| let {x1 = e1; . . . ; xn = en} in e (let binding)
| let x1, . . . , xn free in e (free variables)

p ::= c(x1, . . . , xn) (pattern)

only top-level functions
each function defined by one rule
corresponds to textual representation of definitional tree
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From Curry to FlatCurry

Curry: source program

leq Z _ = True
leq (S _) Z = False
leq (S x) (S y) = leq x y

FlatCurry (pretty printed)

leq x1 x2 = case x1 of
Z → True
S x3 → case x2 of

Z → False
S x4 → leq x3 x4

Assertion-collecting semantics:
top-down pass through right-hand side expression
collect properties and generate proof obligations
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Verify programs as non-failing

Motivation
ensure that a program has no (internal) run-time failure
allow partially defined operations but control them

Partially defined operations

head :: [a] → a tail :: [a] → [a]
head (x:xs) = x tail (x:xs) = xs

Controlling inputs to partially defined operations

readCommand = do
putStr "Input a command:"
ws ← fmap words getLine
case null ws of True → readCommand

False → processCommand (head ws) (tail ws)
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Fail-free program verification

Objective
allow programming with partially defined operations and failures
encapsulate (logic) subcomputations containing failures
prove non-failure of (top-level) functional computation

⇝ fix Tony Hoare’s “billion dollar mistake” for declarative programs

Fail-free programs [PPDP 2018]

add non-fail conditions to operations
if satisfied at call site⇝ computation does not fail

Fully automatic method [FLOPS 2024, SciCo 2026]

infer abstract call types for each operation
approximation of non-fail conditions
approximate input/output behavior by in/out types
for each call in a function definition: check call type requirement
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Call types and abstract types

Call type of an operation
set of argument values so that operation does not fail
precise call types complex or intractable

Abstract types A
approximate sets of values (regular types, depth-bounded terms Ak ,. . . )
example abstract domain: top-level constructors

A1 = {D ⊆ C | all constructors of D belong to same type} ∪ {⊤}

Abstract call type examples

head (x:xs) = x tail (x:xs) = xs

Abstract call type of head and tail: {:}
(infer by considering patterns in left-hand sides)
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In/out types

Verifying calls depend on context:

. . . case null ws of True → readCommand
False → processCommand (head ws) (tail ws)

In/out type of an operation
approximate input/output behavior
set of abstract argument/result types:

IO(fn) ⊆ {a1 . . . an ↪→ a | a1, . . . ,an,a ∈ A}

Example

null [] = True
null (x:xs) = False

IO(null) = {{[]} ↪→ {True}, {:} ↪→ {False}}

Inference by analyzing pattern/case structure of defining rules
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Automatic non-failure checking

Overall method w.r.t. abstract type domain A:
1 Infer (abstract) in/out types for all operations
2 Infer initial (abstract) call types for all operations
3 For each defined operation:

check calls in right-hand side for satisfaction of their call types
4 If not successful for some operation:

refine its call type with call-type constraints from unsatisfied call types
and start again with step 3.

Termination of fixpoint method: finite abstract type domain or widening steps
Worst case: inference of empty call types⇝ encapsulate its use

readCommand = do
ws ← fmap words getLine
case null ws of True → readCommand

False → processCommand (head ws) (tail ws)

IO(null) = {{[]} ↪→ {True}, {:} ↪→ {False}} ⇝ ws 7→ {:}
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Inference and verification of non-fail conditions

Non-fail conditions with abstract types [FLOPS 2024]

Fully automatic with fixpoint iteration as sketched above:

last [x] = x
last (x:y:zs) = last (y:zs)

⇝ Non-fail condition: {:}

Non-fail conditions with arithmetic conditions [APLAS 2024]

Fully automatic by using SMT solver for arithmetic conditions:

fac n | n == 0 = 1
| n > 0 = n * fac (n - 1)

⇝ fac’nonfail n = n==0 | | n>0
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Conclusions

Declarative programming

high-level programming style

reliability by expressing what should be implemented
(without such a specification, AI-generated programs are not trustworthy)

formal semantics supports analysis and verification of programs

Human intelligence is necessary to specify the “what ”!
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Some further aspects of Curry

demand-driven evaluation strategy⇝ optimal evaluation [JACM 2000]

translate logic programs to Curry⇝ smaller search spaces
[TPLP 2022, LOPSTR 2024]

various programming tools (Visual Studio Code,. . . ), packages (> 150),
applications, e.g., module information system at Kiel University
(https://moduldb.informatik.uni-kiel.de/)

implementations (⇝ www.curry-lang.org)
PAKCS: compiles to Prolog (efficient compiler)
KiCS2: compiles to Haskell (efficient executables)
Curry2Go: compiles to Go (fair parallel search)
KMCC (under development): compiles to Haskell
(monadic target code, fair search, efficient executables)
· · ·
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