
Declarative Programming
Efficient and reliable programming with human intelligence

Michael Hanus

Kiel University
Programming Languages and Compiler Construction

PADL 2026, Rennes

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 1

Programming: A trivial task?

Traditional programming has many pitfalls
Compute the factorial of a natural number:

function fac(n:nat):nat =
begin

z:=1; p:=1;
while z<n+1 do
begin p:=p*z; z:=z+1 end;
return(p)

end

Potential errors:
counter initialization: z:=1 or z:=0 ?
loop condition: z<n+1 or z<n or z<=n ?
statement ordering: z:=z+1 before or after p:=p*z ?

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 2

Why programming? Why not ChatGPT, Copilot,. . . ?

Questions from worried parents of prospective students

Is it necessary to learn programming?

Or is it necessary to study computer science at all?

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 3

David L. Parnas 1988 (INFOR 26(4), 234–246)

It is indeed a feature of AI programs that their authors do not know
what they will do, the field has made a virtue out of a vice.
. . .
The way humans solve problems is not usually the best way for a
machine to solve the same problem.

But now we have LLMs!

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 4

ACM Technews, Reuters, July 10, 2025

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 5

Reuters, July 10, 2025

Contrary to popular belief, using cutting-edge artificial intelligence
tools slowed down experienced software developers when they were
working in codebases familiar to them, rather than supercharging their
work, a new study found.
. . .
Before the study, the open-source developers believed using AI would
speed them up, estimating it would decrease task completion time by
24%. Even after completing the tasks with AI, the developers believed
that they had decreased task times by 20%. But the study found that
using AI did the opposite: it increased task completion time by 19%.
. . .
The slowdown stemmed from developers needing to spend time going
over and correcting what the AI models suggested.

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 6

Why not prove code correctness with ChatGPT?

> Define a function to compute the last element of a list.

Certainly!
. . . long text omitted. . .

> Can you prove that this implementation is correct?

Certainly!
. . .
We can verify the correctness of the function by running various test cases to
cover different scenarios:
. . .
Here’s how we can implement these tests:
. . .

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 7

Proving code correctness with ChatGPT, 2nd try

> Can you formally prove that this implementation is correct?
. . .
Let’s formally prove correctness using mathematical induction on the length
of the list.

Base Case: List of length 1
. . .

Inductive Hypothesis: Assume that for a list of length n. . .

Inductive Step:
. . .
informal explanation without using inductive hypothesis!
. . .

Problem: no formal claim to prove, i.e., what is the last element?

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 8

Apple Research, June 2025

LLMs seem to reason on small problem sizes
LLMs hallucinate on larger problems
ok for language-oriented tasks, but for reliable programming?

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 9

Developing trustworthy code

Reliable code: important but difficult to assure

Unit testing: find the right test cases

Property-based testing: formulate properties

Verification: formally prove properties

Property “last element of a list”
If we add a single element to some list, then this element is the last
element of the concatenated list.

Formally (“++” denotes list concatenation, [...] denotes lists):

∀xs,x: last (xs ++ [x]) = x

⇝ use this condition for property-based testing and verification

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 10

Declarative programming

Property/definition “last element of a list”

∀xs,x: last (xs ++ [x]) = x

valid definition and, thus, executable in declarative programming!

Declarative programming:
describe/specify what is the problem to solve
do not write steps/statements how to solve the problem
main difference to imperative programming:

referential transparency: the value of an expression depends on the values
of subexpressions but not on evaluation time
substitution principle (replace equals by equals), no side effects

formalisms/logics to describe problems
lambda calculus⇝ functional programming (e.g., Haskell)
predicate logic ⇝ logic programming (e.g., Prolog)

amalgamate both⇝ Curry

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 11

Declarative programming with Curry-lang.org

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 12

Declarative programming with Curry-lang.org

Curry = HaskellHaskell + non-determinism + free variables

Functional programming: factorial function
Mathematical definition:

fac(n) = 1 ∗ 2 ∗ · · · ∗ (n − 1) ∗ n
= fac(n − 1) ∗ n

Recursive/constructive definition:

fac(n) =
{

1 if n = 0
fac(n − 1) ∗ n if n > 0

Implementation in Haskell/Curry:
fac n | n == 0 = 1

| n > 0 = fac (n-1) * n

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 13

Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

Typical scheme: define operations by case distinctions on data constructors

data Bool = False | True -- Boolean values

not :: Bool → Bool
not False = True
not True = False

Type of polymorphic lists: [τ] ≈ list with elements of type τ

data [a] = [] | a : [a]

List concatenation:
(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 14

Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

Curry applies all (applicable) rules defining an operation

Non-deterministic list insertion:
insert :: a → [a] → [a]
insert x ys = x : ys
insert x (y:ys) = y : insert x ys

> insert 0 [1,2] ⇝ [0,1,2] ? [1,0,2] ? [1,2,0]

Some permutation of a list:
perm :: [a] → [a]
perm [] = []
perm (x:xs) = insert x (perm xs)

> perm [1,2,3] ⇝ [3,2,1] ? [3,1,2] ? [2,3,1] ?
[2,1,3] ? [1,3,2] ? [1,2,3]

Non-deterministic operation!

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 15

Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

Free variable: unknown value

Unification (=:=): equality constraint with guessing/binding free variables

Last element of a given list:
last :: [Int] → Int
last ys | ys =:= xs ++ [x]

= x where xs,x free

Useful abbreviation: functional patterns
last :: [Int] → Int
last (xs ++ [x]) = x

Checking palindromes:
palindrome (xs ++ reverse xs) = "even"
palindrome (xs ++ [_] ++ reverse xs) = "odd"

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 16

Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables

+ encapsulated search

+ set functions

+ constraints

+ default rules

+ standard class Data (typing free variables)

+ generic (fair) search

+ determinism types (PPDP’25)

+ · · ·

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 17

Semantics of declarative programs

High-level (declarative) semantics
specifies intended result values (of expressions)
unspecified: operational/implementation aspects (e.g., strategies)

Operational semantics
specifies computation strategy and computed values
reason about time (computation steps) and space

Both views should coincide!
. . . with well-defined restrictions (LP: compute general representatives of values)

Advantage:
programmer considers declarative view, abstract from operational aspects
analysis or verification tools use an appropriate view

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 18

High-level semantics for Curry: CRWL

Constructor-based ReWriting Logic [González-Moreno et al. JLP’99]

execution-independent specification of possible values of expressions
values: variables (V) and data constructor (C) applications

To cover non-strict, non-deterministic operations:
partial values: values extended by ⊥ (undefined value)
(1:2:⊥ approximates 1:2:[], 1:2:3:[],. . .)

CRWL specifies approximation statements e↠ t

CRWL rules

x ↠ x x ∈ V e1 ↠ t1 · · · en ↠ tn
C e1 . . . en ↠ C t1 . . . tn

C ∈ C

e↠ ⊥
e1 ↠ θ(t1) · · · en ↠ θ(tn) θ(r)↠ t

f e1 . . . en ↠ t
f t1 . . . tn = r ∈ P
θ ∈ CSubst⊥

CSubst⊥: partial constructor substitutions

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 19

Semantics of non-deterministic operations

Choice operation

x ? _ = x coin = 0 ? 1
_ ? y = y dup x = (x,x)

Values of (dup coin)
Call-time choice: values of arguments fixed before function call
⇝ (0,0) (1,1)

Run-time choice: values of arguments fixed when they are used
⇝ (0,0) (0,1) (1,0) (1,1)

Decision by language design:
run-time choice: computed value might depend on strategy
call-time choice: semantics with “least astonishment”,
can be implemented with call-by-value or call-by-need (sharing!)

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 20

CRWL specifies call-time choice

x ↠ x x ∈ V e1 ↠ t1 · · · en ↠ tn
C e1 . . . en ↠ C t1 . . . tn

C ∈ C

e↠ ⊥
e1 ↠ θ(t1) · · · en ↠ θ(tn) θ(r)↠ t

f e1 . . . en ↠ t
f t1 . . . tn = r ∈ P
θ ∈ CSubst⊥

x ? _ = x coin = 0 ? 1
_ ? y = y dup x = (x,x)

To reduce (dup coin) by CRWL:
reduce argument coin to either 0 or 1 before reducing right-hand side of dup

CRWL rules contain a lot of guesses:
Apply ⊥-rule or another?
Which program rule and which θ to reduce a function?

⇝ use narrowing to avoid or delay these guesses

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 21

Operational semantics: narrowing

Narrowing step: e ⇝p, l = r , σ σ(e[r]p)
p : non-variable position in e

l = r : program rule (variant)
σ : most general unifier for e|p and l

⇝ no ⊥-guesses, no θ-guesses
⇝ guess rule and position p

Use a strategy to select narrowing position

Needed narrowing [JACM 2000]

constructive method to compute positions and specific unifiers
demand-driven (needed) strategy
originally defined on inductively sequential rewrite systems where all
rules of an operation can be organized in a (definitional) tree

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 22

Definitional tree [Antoy’92]

nodes marked with patterns
consists of branch nodes (case distinction), rule nodes
contains all rules of a function, root with most general pattern

Addition on Peano numbers

data Nat = Z | S Nat

add Z y = y
add (S x) y = S (add x y)

add Z x2 = x2 add (S x) x2 = S(add x x2)

add x1 x2

�
�

��

Q
Q
QQ

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 23

Definitional tree [Antoy’92]

Less-or-equal on Peano numbers

leq Z _ = True
leq (S _) Z = False
leq (S x) (S y) = leq x y

leq Z x2 = True leq (S x) x2

leq (S x) Z = False leq (S x) (S y) = leq x y

leq x1 x2

�
�

��

Q
Q
QQ

�
�

��

Q
Q
QQ

can be computed at compile time
guide strategy of needed narrowing

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 24

Needed narrowing [JACM 2000]

Evaluate outermost function call (f e1 . . . en) (informal)
Find an argument i needed by all rules: if ei

function call: evaluate ei

constructor-rooted: select corresponding rules (and proceed)
variable: instantiate it to constructors needed by rules (and proceed)

Properties of needed narrowing
Sound: computed values are derivable by CRWL
Complete: any CRWL-value is an instance of some computed value
Optimal strategy:

1 No unnecessary steps: each step is needed, i.e., unavoidable for some value
2 Shortest derivations: derivations have minimal length (with sharing)
3 Minimal value set: any two distinct derivations compute independent values
4 Determinism: no guessing during evaluation of variable-free expressions

⇝ Consideration of evaluation details not necessary for reliable programming
Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 25

Declarative programming: intermediate summary

Trustworthy software is important

AI/LLMs can be a helpful component

reliable programs require precise descriptions/specifications

need to be provided by humans (“precise prompt engineering”)

declarative programming supports high-level executable specifications

can be used to test or verify more efficient implementations

Further advantage of declarative programming
case distinctions, no side effects ⇝ automatic analysis and verification

In the following:
contract verification
inference and verification of non-fail conditions

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 26

Contracts for Curry [PADL 2012]

Given: f :: τ1 → · · · → τn → τ

Contract for f : pre- and postcondition

Precondition:
f’pre :: τ1 → · · · → τn → Bool

Postcondition:
f’post :: τ1 → · · · → τn → τ → Bool

Dynamic contract checking
Curry preprocessor transforms contracts into dynamic checks:

precondition⇝ check arguments before each call
postcondition⇝ check arguments/result after evaluation

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 27

Contract verification [LOPSTR 2017, FI 2020]

Verify contracts at compile time ⇝ omit run-time checking, improve trust

Factorial operation with contract:

fac n = if n==0 then 1
else n * fac (n-1)

fac’pre n = n >= 0
fac’post n f = f > 0

Verify precondition of recursive fac call:
n>=0 (by precondition)
¬(n==0) (since else branch is chosen)
n>=0 ∧ ¬(n==0) =⇒ (n-1)>=0 (by SMT solver)

⇝ precondition of recursive call always satisfied, omit run-time check

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 28

Contract verification

Verifying postcondition

fac n = if n==0 then 1
else n * fac (n-1)

fac’post n f = f > 0

Consider value of right-hand side:
1 then branch: 1 > 0⇝ postcondition satisfied
2 else branch:
n>=0 (by precondition)
¬(n==0) (since else branch is chosen)
fac(n-1)>0 (by postcondition)
n>=0 ∧ ¬(n==0) ∧ fac(n-1)>0 =⇒ n*fac(n-1)>0 (by SMT)
⇝ postcondition satisfied

Altogether: postcondition always satisfied, omit run-time checks

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 29

Contract verification: number summation

Number summation

sum :: Int → Int
sum n = if n==0 then 0

else n + sum (n-1)

sum’pre n = n >= 0
sum’post n f = f == n * (n+1) ‘div‘ 2

Contract verifier:
precondition of recursive call satisfied
postcondition satisfied

⇝ fully automatic verification of postcondition (proof of Gauss’ formula)

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 30

Contract verification: implementation

Assertion-collecting semantics [LOPSTR 2017, FI 2020]

1 compute with symbolic values instead of concrete ones
2 collect properties that are known to be valid
3 do not evaluate functions but collect their pre- and postconditions

Use SMT solver (Z3) to verify collected assertions:
if verifiable, omit dynamic contract check

. . . to make it feasible on Curry programs:
compile Curry programs into simpler intermediate language: FlatCurry
remove local declarations by lambda lifting
translate complex patterns into case/or expressions
standard Curry front end produces FlatCurry programs
(used by interpreters, compilers, and other tools)

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 31

FlatCurry

Abstract syntax of FlatCurry
D ::= f (x1, . . . , xn) = e (function definition)

e ::= x (variable)
| c(e1, . . . ,en) (constructor call)
| f (e1, . . . ,en) (function call)
| case e of {p1 → e1; . . . ;pn → en} (case expression)
| e1 or e2 (disjunction)
| let {x1 = e1; . . . ; xn = en} in e (let binding)
| let x1, . . . , xn free in e (free variables)

p ::= c(x1, . . . , xn) (pattern)

only top-level functions
each function defined by one rule
corresponds to textual representation of definitional tree

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 32

From Curry to FlatCurry

Curry: source program

leq Z _ = True
leq (S _) Z = False
leq (S x) (S y) = leq x y

FlatCurry (pretty printed)

leq x1 x2 = case x1 of
Z → True
S x3 → case x2 of

Z → False
S x4 → leq x3 x4

Assertion-collecting semantics:
top-down pass through right-hand side expression
collect properties and generate proof obligations

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 33

Verify programs as non-failing

Motivation
ensure that a program has no (internal) run-time failure
allow partially defined operations but control them

Partially defined operations

head :: [a] → a tail :: [a] → [a]
head (x:xs) = x tail (x:xs) = xs

Controlling inputs to partially defined operations

readCommand = do
putStr "Input a command:"
ws ← fmap words getLine
case null ws of True → readCommand

False → processCommand (head ws) (tail ws)

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 34

Fail-free program verification

Objective
allow programming with partially defined operations and failures
encapsulate (logic) subcomputations containing failures
prove non-failure of (top-level) functional computation

⇝ fix Tony Hoare’s “billion dollar mistake” for declarative programs

Fail-free programs [PPDP 2018]

add non-fail conditions to operations
if satisfied at call site⇝ computation does not fail

Fully automatic method [FLOPS 2024, SciCo 2026]

infer abstract call types for each operation
approximation of non-fail conditions
approximate input/output behavior by in/out types
for each call in a function definition: check call type requirement

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 35

Call types and abstract types

Call type of an operation
set of argument values so that operation does not fail
precise call types complex or intractable

Abstract types A
approximate sets of values (regular types, depth-bounded terms Ak ,. . .)
example abstract domain: top-level constructors

A1 = {D ⊆ C | all constructors of D belong to same type} ∪ {⊤}

Abstract call type examples

head (x:xs) = x tail (x:xs) = xs

Abstract call type of head and tail: {:}
(infer by considering patterns in left-hand sides)

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 36

In/out types

Verifying calls depend on context:

. . . case null ws of True → readCommand
False → processCommand (head ws) (tail ws)

In/out type of an operation
approximate input/output behavior
set of abstract argument/result types:

IO(fn) ⊆ {a1 . . . an ↪→ a | a1, . . . ,an,a ∈ A}

Example

null [] = True
null (x:xs) = False

IO(null) = {{[]} ↪→ {True}, {:} ↪→ {False}}

Inference by analyzing pattern/case structure of defining rules

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 37

Automatic non-failure checking

Overall method w.r.t. abstract type domain A:
1 Infer (abstract) in/out types for all operations
2 Infer initial (abstract) call types for all operations
3 For each defined operation:

check calls in right-hand side for satisfaction of their call types
4 If not successful for some operation:

refine its call type with call-type constraints from unsatisfied call types
and start again with step 3.

Termination of fixpoint method: finite abstract type domain or widening steps
Worst case: inference of empty call types⇝ encapsulate its use

readCommand = do
ws ← fmap words getLine
case null ws of True → readCommand

False → processCommand (head ws) (tail ws)

IO(null) = {{[]} ↪→ {True}, {:} ↪→ {False}} ⇝ ws 7→ {:}

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 38

Inference and verification of non-fail conditions

Non-fail conditions with abstract types [FLOPS 2024]

Fully automatic with fixpoint iteration as sketched above:

last [x] = x
last (x:y:zs) = last (y:zs)

⇝ Non-fail condition: {:}

Non-fail conditions with arithmetic conditions [APLAS 2024]

Fully automatic by using SMT solver for arithmetic conditions:

fac n | n == 0 = 1
| n > 0 = n * fac (n - 1)

⇝ fac’nonfail n = n==0 | | n>0

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 39

Conclusions

Declarative programming

high-level programming style

reliability by expressing what should be implemented
(without such a specification, AI-generated programs are not trustworthy)

formal semantics supports analysis and verification of programs

Human intelligence is necessary to specify the “what ”!

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 40

Some further aspects of Curry

demand-driven evaluation strategy⇝ optimal evaluation [JACM 2000]

translate logic programs to Curry⇝ smaller search spaces
[TPLP 2022, LOPSTR 2024]

various programming tools (Visual Studio Code,. . .), packages (> 150),
applications, e.g., module information system at Kiel University
(https://moduldb.informatik.uni-kiel.de/)

implementations (⇝ www.curry-lang.org)
PAKCS: compiles to Prolog (efficient compiler)
KiCS2: compiles to Haskell (efficient executables)
Curry2Go: compiles to Go (fair parallel search)
KMCC (under development): compiles to Haskell
(monadic target code, fair search, efficient executables)
· · ·

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 41

https://moduldb.informatik.uni-kiel.de/
www.curry-lang.org

