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Programming: A trivial task?

Traditional programming has many pitfalls

Compute the factorial of a natural number:

function fac(n:nat) :nat =
begin
z:=1; p:=1;
while z<n+1l do
begin p:=pxz; z:=z+l end;
return (p)
end

Potential errors:
@ counter initialization: z:=1 or z:=0 ?
@ loop condition: z<n+1 or z<n or z<=n ?
@ statement ordering: z:=z+1 before or after p:=pxz ?
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Why programming? Why not ChatGPT, Copilot

Questions from worried parents of prospective students

@ Is it necessary to learn programming?

@ Oris it necessary to study computer science at all?

g = =

Michael Hanus (CAU Kiel) Declarative Programming

PADL 2026

3



David L. Parnas 1988 (INFOR 26(4), 234-246)

WHY ENleEERS SHOULD NO'T USE
ARTIFICIAL INTELLIGENCE*
. DAVID LORGE PARNAS

Queens University, Kingsion, Ontario, Canada K7L NG

ABSTRACT

It can be said that the most promising ficld within computer science is Artificia
Intelligence, often simply known as Al Same will inferpret this as meaning that Al
is a field that holds great promisc. Others interpret this as meaning that Al s a
field whose practitioners make great promises. Receatly conferences. journals and

newspapers articles have contained suggestions that Al offers special new teehniques
that can make drastic changes in the role of computer systems in the world
This paper presents a more skeptical view. It argucs that (a) the terminology

used in many Al discussions is poor. (b) thal many techniqucs widely touted as
revolutionary are ad hoc. “cut and try,” methods that will not fead 1o trustworthy
products, (¢) that many claims about Al and cxpert systems are exaggerated. and (d)
that the fundamental research is more philosophical than practical. Most important,
it concludes that many applications being tackled using ad hoc, heuristic ‘methods
can be solved using conventional systematic analysis and sound engincering practice.

It is indeed a feature of Al programs that their authorg do not know
what they will do, the field has made a virtue out of a vice.

.7.'f;e way humans solve problems is not usually the best way for a
machine to solve the same problem.

But now we have LLMs!




ACM Technews, Reuters, July 10, 2025

Al slows down some experienced
software developers, study finds

By Anna Tong

July 10, 2025 4:01 PM GMT+2 - Updated July 10, 2025 A Aa <

h computers and smartphones are seen in front of the words "Artificial Intelligence AI" in this lLustration created on February 19,

2024.RE /Dada Ruvic/lllustrati Purchase Li

Summary

« Al tools increase seasoned developers' task times, study finds
» Developers expected Al tools to speed up task times

« Slowdown stems from developers having to correct Al models' suggestions
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Reuters, July 10, 2025

Contrary to popular belief, using cutting-edge artificial intelligence
tools slowed down experienced software developers when they were
working in codebases familiar to them, rather than supercharging their
work, a new study found.

Before the study, the open-source developers believed using Al would
speed them up, estimating it would decrease task completion time by
24%. Even after completing the tasks with Al, the developers believed
that they had decreased task times by 20%. But the study found that
using Al did the opposite: it increased task completion time by 19%.

The slowdown stemmed from developers needing to spend time going
over and correcting what the Al models suggested.
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Why not prove code correctness with ChatGPT?

> Define a function to compute the last element of a list.

Certainly!
... long text omitted. . .

> Can you prove that this implementation is correct?

Certainly!

We can verify the correctness of the function by running various test cases to
cover different scenarios:

Here’'s how we can implement these tests:
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Proving code correctness with ChatGPT, 2nd try

> Can you formally prove that this implementation is correct?

Let’s formally prove correctness using mathematical induction on the length
of the list.

Base Case: List of length 1

Inductive Hypothesis: Assume that for a list of length n. ..

Inductive Step:

informal explanation without using inductive hypothesis!

Problem: no formal claim to prove, i.e., what is the last element?
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Apple Research, June 2025

The Ilusion of Thinking:
Understanding the Strengths and Limitations of Reasoning Models
via the Lens of Problem Complexity

Parshin Shojace*'  Iman Mirzadeh* Keivan Alizadeh
Maxwell Horton Samy Bengio Mehrdad Farajtabar

Apple

Abstract

Recent generations of frontier language models have introduced Large Reasoning Models
(LRMs) that generate detailed thinking processes before providing answers. While these models
demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, seal-
ing properties, and limitations remain insufficiently understood. Current evaluations primarily fo-
cus on established mathematical and coding benchmarks, emphasizing final answer accuracy. How-
ever, this evaluation para

g often suffers from data contamination and does not provide insights
into the reasoning traces’ structure and quality. In this work, we systematically investigate these
gaps with the help of controllable puzzle environments that allow precise manipulation of composi-

[cs.Al] 20 Nov 2025

@ LLMs seem to reason on small problem sizes
@ LLMs hallucinate on larger problems
@ ok for language-oriented tasks, but for reliable programming?

PADL 2026 9



Developing trustworthy code

Reliable code: important but difficult to assure
@ Unit testing: find the right test cases
@ Property-based testing: formulate properties

@ Verification: formally prove properties

Property “last element of a list”

If we add a single element to some list, then this element is the last
element of the concatenated list.

Formally (“++” denotes list concatenation, [ .. .] denotes lists):

Vxs,x: last (xs ++ [x]) = x

~ use this condition for property-based testing and verification
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Declarative programming

Property/definition “last element of a list”

Vxs,x: last (xs++ [x]) = x

valid definition and, thus, executable in declarative programming!

Declarative programming:

@ describe/specify what is the problem to solve
@ do not write steps/statements how to solve the problem
@ main difference to imperative programming:

e referential transparency: the value of an expression depends on the values
of subexpressions but not on evaluation time
e substitution principle (replace equals by equals), no side effects

@ formalisms/logics to describe problems

e lambda calculus ~~ functional programming (e.g., Haskell)
e predicate logic ~- logic programming (e.g., Prolog)

amalgamate both ~~ Curry
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Declarative programming with Curry-lang.org

Curry = Haskell + non-determinism + free variables
Functional programming: factorial function
Mathematical definition:

fac(n) = 1x2x---x(n—1)%n
= fac(n—1) * N

Recursive/constructive definition:

fac(n) — 1 itn=0
| fac(n—1)xn ifn>0

Implementation in Haskell/Curry:

facn | n==0=1
| n >0 fac (n-1) % n
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Declarative programming with Curry-lang.org

Curry = + non-determinism + free variables

Typical scheme: define operations by case distinctions on data constructors

data Bool = False | True -- Boolean values
not :: Bool — Bool

not False = True

not True = False

Type of polymorphic lists: [7] = list with elements of type
data [a] =[] | a : [a]

List concatenation:
(++) :: [a] — [a] — [a]

[] ++ ys = ys
(x:xs5) ++ ys X : (xs ++ ys)
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Declarative programming with Curry-lang.org

Curry = + free variables

Curry applies all (applicable) rules defining an operation

Non-deterministic list insertion:

insert :: a — [a] — [a]
insert x ys =X : Vys

insert x (y:ys) y : insert x ys

> insert 0 [1,2] ~ [0,1,2] 2 [1,0,2] ? [1,2,0]

Some permutation of a list:

perm :: [a] — [a]
perm [] = [
perm (x:xs) = insert x (perm xs)

> perm [1,2,3] ~ [3,2,1] 2 [3,1,2] 2
(2,1,31 2 [1,3,2] 2 [1,2,3]
Non-deterministic operation!

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026

15




Declarative programming with Curry-lang.org

Free variable: unknown value

Unification (=:=): equality constraint with guessing/binding free variables

Last element of a given list:

last :: [Int] — Int
last ys | ys =:= xs ++ [x]
= X where xs,x free

Useful abbreviation: functional patterns

last :: [Int] — Int
last (xs ++ [x]) = X

Checking palindromes:

palindrome (xs ++ reverse xsS) "even"
palindrome (xs ++ [_] ++ reverse xs) = "odd"
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Declarative programming with Curry-lang.org

+ encapsulated search
set functions
constraints

default rules

generic (fair) search

determinism types (PPDP’25)

+
+
+
+ standard class Data (typing free variables)
+
+
+
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Semantics of declarative programs

High-level (declarative) semantics
@ specifies intended result values (of expressions)
@ unspecified: operational/implementation aspects (e.g., strategies)

Operational semantics

@ specifies computation strategy and computed values
@ reason about time (computation steps) and space

V.

Both views should coincide!

... with well-defined restrictions (LP: compute general representatives of values)

Advantage:
@ programmer considers declarative view, abstract from operational aspects
@ analysis or verification tools use an appropriate view

v
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High-level semantics for Curry: CRWL

Constructor-based ReWriting Logic [Gonzalez-Moreno et al. JLP'99]
@ execution-independent specification of possible values of expressions
@ values: variables (V) and data constructor (C) applications

To cover non-strict, non-deterministic operations:

@ partial values: values extended by | (undefined value)
(L:2:L approximates 1:2:[1,1:2:3:[1,...)

@ CRWL specifies approximation statements e —» t

v

CRWL rules

e —»t - ep—>»ip
X — X xXeVy Cei...en»Ct... 1 Cec
er»0(t) ---en—>0(t,) 6(r)>t ftH...th=reP
e— L fe.. e,,—»t eeCSubstL

CSubst, : partial constructor substitutions
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Semantics of non-deterministic operations

Choice operation

X ? = x coin =0 2 1
_?2y =y dup x = (x,x)

Values of (dup coin)

@ Call-time choice: values of arguments fixed before function call
~ (0,0) (1,1)

@ Run-time choice: values of arguments fixed when they are used
~ (0,0) (0,1) (1,0) (1,1)

Decision by language design:
@ run-time choice: computed value might depend on strategy

@ call-time choice: semantics with “least astonishment”,
can be implemented with call-by-value or call-by-need (sharing!)
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CRWL specifies call-time choice

e —»h e~y

X — X e Cei...ep—>»Ct... 1y Cec
e1—»0(t1)~-- — 0(t,) 6(r) >t fhH...th=re?P
e—» L fe en—»t HECSubstL
X ?_ = X coin = 0 ? 1
_?2y =y dup x = (x,Xx)

To reduce (dup coin) by CRWL:
reduce argument coin to either 0 or 1 before reducing right-hand side of dup

CRWL rules contain a lot of guesses:

@ Apply L-rule or another?
@ Which program rule and which 6 to reduce a function?
~» use narrowing to avoid or delay these guesses
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Operational semantics: narrowing

Narrowing step: e ~+p /=, , o(€[r]p)

p : non-variable position in e
I=r : program rule (variant)

o . most general unifier for e[, and /
~» Nno _L-guesses, no f-guesses

~~ guess rule and position p

Use a strategy to select narrowing position

Needed narrowing [JACM 2000]

@ constructive method to compute positions and specific unifiers
@ demand-driven (needed) strategy

@ originally defined on inductively sequential rewrite systems where all
rules of an operation can be organized in a (definitional) tree
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Definitional tree [Antoy'92]

@ nodes marked with patterns
@ consists of branch nodes (case distinction), rule nodes
@ contains all rules of a function, root with most general pattern

Addition on Peano numbers

data Nat = Z | S Nat
add Z y =y
add (S x) vy = S (add x y)
add x1 x2
add 72 x2 = x2 add (S x) x2 = S (add x x2)
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Definitional tree [Antoy'92]

Less-or-equal on Peano numbers

leq Z _ = True
legq (S _) Z = False
leg (S x) (Sy) =legxy
leg x1 x2
leqg Z x2 = True leg (S x) x2
leg (S x) Z = False leg (S x) (S y) = leq x Vy

@ can be computed at compile time
@ guide strategy of needed narrowing
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Needed narrowing [Jacm 2000]

Evaluate outermost function call (f ey ... e,) (informal)
Find an argument i needed by all rules: if g;
@ function call: evaluate g;
@ constructor-rooted: select corresponding rules (and proceed)
@ variable: instantiate it to constructors needed by rules (and proceed)

Properties of needed narrowing

@ Sound: computed values are derivable by CRWL
@ Complete: any CRWL-value is an instance of some computed value

@ Optimal strategy:

@ No unnecessary steps: each step is needed, i.e., unavoidable for some value
@ Shortest derivations: derivations have minimal length (with sharing)

@ Minimal value set: any two distinct derivations compute independent values
@ Determinism: no guessing during evaluation of variable-free expressions

~» Consideration of evaluation details not necessary for reliable programming
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Declarative programming: intermediate summary

Trustworthy software is important

@ Al/LLMs can be a helpful component

@ reliable programs require precise descriptions/specifications
@ need to be provided by humans (“precise prompt engineering”)

@ declarative programming supports high-level executable specifications

@ can be used to test or verify more efficient implementations

Further advantage of declarative programming
case distinctions, no side effects ~~ automatic analysis and verification

In the following:
@ contract verification
@ inference and verification of non-fail conditions
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Contracts for Curry [papbL 2012]

Given: Y TN = ST =T

Contract for f: pre- and postcondition

Precondition:
ffpre :: 4 —---— 7, — Bool

frpost :: 74 —---— T — T — Bool

Dynamic contract checking

Curry preprocessor transforms contracts into dynamic checks:
@ precondition ~» check arguments before each call
@ postcondition ~ check arguments/result after evaluation
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Contract verification [LoPSTR 2017, FI 2020]

Verify contracts at compile time ~» omit run-time checking, improve trust )

Factorial operation with contract:

fac n = if n==0 then 1
else n » fac (n-1)

fac’pre n =n >0
fac’post n £ = £ > 0

Verify precondition of recursive fac call:
n>=0 (by precondition)

- (n==0) (since else branch is chosen)

n>=0 A —(n==0) = (n-1)>=0 (by SMT solver)

~ precondition of recursive call always satisfied, omit run-time check
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Contract verification

Verifying postcondition

fac n = if n==0 then 1
else n » fac (n-1)

fac’post n £ = £ > 0

Consider value of right-hand side:

@ then branch: 1 > 0 ~ postcondition satisfied

@ clse branch:
n>=0 (by precondition)

- (n==0) (since else branch is chosen)
fac (n-1) >0 (by postcondition)
n>=0 A = (n==0) A fac(n-1)>0 = nxfac (n-1)>0 (by SMT)

~» postcondition satisfied
Altogether: postcondition always satisfied, omit run-time checks
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Contract verification: number summation

Number summation

sum :: Int — Int
sum n = if n==0 then 0
else n + sum (n-1)

sum’ pre n =n >0
sum’post n f f = n x (n+tl) ‘div' 2

Contract verifier:
@ precondition of recursive call satisfied

@ postcondition satisfied
~ fully automatic verification of postcondition (proof of Gauss’ formula)
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Contract verification: implementation

Assertion-collecting semantics [LOPSTR 2017, FI 2020]

@ compute with symbolic values instead of concrete ones
@ collect properties that are known to be valid
© do not evaluate functions but collect their pre- and postconditions

Use SMT solver (Z3) to verify collected assertions:
if verifiable, omit dynamic contract check

...to make it feasible on Curry programs:

@ compile Curry programs into simpler intermediate language: FlatCurry
@ remove local declarations by lambda lifting
@ translate complex patterns into case/or expressions

@ standard Curry front end produces FlatCurry programs
(used by interpreters, compilers, and other tools)
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FlatCurry

Abstract syntax of FlatCurry

D == f(x,...,xn)=¢€ (function definition)
e = X (variable)

| c(ei,...,en) (constructor call)

|  f(e1,...,en) (function call)

| caseeof {p1 — e1;...;pn — €n} (case expression)

| eiore (disjunction)

| let{xi=e1;...;xp=¢€p}ine (let binding)

| letxq,...,x,freeine (free variables)
p = c(X1,...,Xn) (pattern)

@ only top-level functions
@ each function defined by one rule
@ corresponds to textual representation of definitional tree
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From Curry to FlatCurry

Curry: source program

leg Z _ = True
leg (S ) Z = False
legq (S x) (Svy) =legxy

A\

FlatCurry (pretty printed)

legq x1 x2 = case x1 of

Z — True
S x3 — case x2 of
Z — False

S x4 — leg x3 x4

\

Assertion-collecting semantics:
@ top-down pass through right-hand side expression
@ collect properties and generate proof obligations
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Verify programs as non-failing

@ ensure that a program has no (internal) run-time failure
@ allow partially defined operations but control them

V.

Partially defined operations

head :: [a] — a tail :: [a] — [a]
head (x:xs) = x tail (x:xs) = xS

v

Controlling inputs to partially defined operations

readCommand = do
putStr "Input a command:"
ws <~ fmap words getLine
case null ws of True — readCommand
False — processCommand (head ws) (tail ws)

v
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Fail-free program verification

@ allow programming with partially defined operations and failures
@ encapsulate (logic) subcomputations containing failures
@ prove non-failure of (top-level) functional computation

~ fix Tony Hoare’s “billion dollar mistake” for declarative programs

Fail-free programs [PPDP 2018]

@ add non-fail conditions to operations
@ if satisfied at call site ~~ computation does not fail

Fully automatic method [FLOPS 2024, SciCo 2026]
@ infer abstract call types for each operation
@ approximation of non-fail conditions
@ approximate input/output behavior by in/out types
@ for each call in a function definition: check call type requirement
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Call types and abstract types

Call type of an operation
@ set of argument values so that operation does not fail
@ precise call types complex or intractable

Abstract types A

@ approximate sets of values (regular types, depth-bounded terms Ay,...)
@ example abstract domain: fop-level constructors

A1 ={D C C | all constructors of D belong to same type} U {T}

Abstract call type examples

head (x:xs) = x tail (x:xXs) = XS
Abstract call type of head and tail: {:}
(infer by considering patterns in left-hand sides)
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In/out types

Verifying calls depend on context:

. case null ws of True — readCommand
False — processCommand (head ws) (tail ws)

In/out type of an operation

@ approximate input/output behavior
@ set of abstract argument/result types:
I0(f,) C{ai...an—al ai,...,an,ac A}

Example
null [] = True
null (x:xs) = False

I0(null) ={{[1} = {True}, {:} — {False}}
Inference by analyzing pattern/case structure of defining rules

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026 37



Automatic non-failure checking

Overall method w.r.t. abstract type domain A:

@ Infer (abstract) in/out types for all operations
@ Infer initial (abstract) call types for all operations

© For each defined operation:
check calls in right-hand side for satisfaction of their call types

© If not successful for some operation:
refine its call type with call-type constraints from unsatisfied call types
and start again with step 3.

Termination of fixpoint method: finite abstract type domain or widening steps
Worst case: inference of empty call types ~~ encapsulate its use

readCommand = do
ws < fmap words getLine
case null ws of True — readCommand
False — processCommand (head ws) (tail ws)

10O(null) = {{[1} = {True},{:} — {False}} ~ ws— {:}
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Inference and verification of non-fail conditions

Non-fail conditions with abstract types [FLOPS 2024]
Fully automatic with fixpoint iteration as sketched above:
last [x] = x
last (x:y:zs) = last (y:zs)

~» Non-fail condition: {:}

Non-fail conditions with arithmetic conditions [APLAS 2024]
Fully automatic by using SMT solver for arithmetic conditions:

facn | n==0=1
| n >0 =n x fac (n-1)
~» fac’nonfail n = n==0 || n>0
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Conclusions

Declarative programming

@ high-level programming style

@ reliability by expressing what should be implemented
(without such a specification, Al-generated programs are not trustworthy)

@ formal semantics supports analysis and verification of programs

Human intelligence is necessary to specify the “what”!
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Some further aspects of Curry

@ demand-driven evaluation strategy ~~ optimal evaluation [JACM 2000]

@ translate logic programs to Curry ~ smaller search spaces
[TPLP 2022, LOPSTR 2024]

@ various programming tools (Visual Studio Code,...), packages (> 150),
applications, e.g., module information system at Kiel University
(https://moduldb.informatik.uni-kiel.de/)

@ implementations (~ www.curry-lang.org)

e PAKCS: compiles to Prolog (efficient compiler)

e KiCS2: compiles to Haskell (efficient executables)

o Curry2Go: compiles to Go (fair parallel search)

e KMCC (under development): compiles to Haskell
(monadic target code, fair search, efficient executables)

° ---

Michael Hanus (CAU Kiel) Declarative Programming PADL 2026

M



https://moduldb.informatik.uni-kiel.de/
www.curry-lang.org

